Skip to main content

Emergent Anisotropy and Flow Alignment in Viscous Rock

  • Chapter
Computational Earthquake Science Part II

Part of the book series: PAGEOPH Topical Volumes ((PTV))

Abstract

—Anovel class of nonlinear, visco-elastic rheologies has recently been developed by MÜhlhauset al.(2002a, b). The theory was originally developed for the simulation of large deformation processes including folding and kinking in multi-layered visco-elastic rock. The orientation of the layer surfaces or slip planes in the context of crystallographic slip is determined by the normal vector the so-called director of these surfaces. Here the model (MÜhlhausetal2002a, b) is generalized to include thermal effects; it is shown that in 2-D steady states the director is given by the gradient of the flow potential. The model is applied to anisotropic simple shear where the directors are initially parallel to the shear direction. The relative effects of textural hardening and thermal softening are demonstrated. We then turn to natural convection and compare the time evolution and approximately steady states of isotropic and anisotropic convection for a Rayleigh numberRa =5.64 x l05for aspect ratios of the experimental domain of I and 2, respectively. The isotropic case has a simple steady-state solution, whereas in the orthotropic convection model patterns evolve continuously in the core of the convection cell, which makes only a near-steady condition possible. This near-steady state condition shows well aligned boundary layers, and the number of convection cells which develop appears to be reduced in the orthotropic case. At the moderate Rayleigh numbers explored here we found only minor influences in the change from aspect ratio one to two in the model domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aki, K. (1968)Seismological Evidence for the Existence of Soft Thin Layers in theUpper Mantle under JapanJ. Geophys. Res. 73, 585–596

    Article  Google Scholar 

  • Belytschko, T., Liu, W. K., and Moran, B.Nonlinear Finite Elements for Continua and Structures(John Wiley and Sons, LTD, 2001) ISBN 0–471–9877 3–5.

    Google Scholar 

  • Cathles L.M The Viscosity of the Earth’s Mantle(Princeton Univ. Press, Princeton, N. J. 1975)

    Google Scholar 

  • Christensen, U. C. (1984), Convection with Pressure and Temperature Dependent Rheology, Geophys. J. R. astr. Soc 77343–384

    Article  Google Scholar 

  • Christensen, U. C. (1987), Some Geodynamical Effects of Anisotropic Viscosity, Geophys. J. R. astr. Soc. 91, 711–736.

    Article  Google Scholar 

  • Debayle, E. (1999), SV-wave Azimuthal Anisotropy in the Australian Upper Mantle: Preliminary Results from Automated Rayleigh Waveform Inversion, Geophys. J. Int. 137, 747–754.

    Google Scholar 

  • Debayle, E. and Kennett, B. L. N. (2000), Anisotropy in the Australian Upper Mantle from Love and Rayleigh Waveform Inversion, Earth and Plan. Sci. Letters, 184, 339–351.

    Article  Google Scholar 

  • De Gennes, P. G. and Prost, J. The Physics of Liquid Crystals, (2nd edition, Clarendon Press, Oxford 1995).

    Google Scholar 

  • Fischer, K. M., Parmentier, E. M., Stine, A. R., and Wolf, E. R. (2000), Modeling Anisotropy and Plate-driven Flow in the Tonga Subduction Zone Backarc, J. Geophys. Res.-Solid Earth 105 (B7), 16,181–16,191.

    Article  Google Scholar 

  • Fouch, M. J., Fischer, K. M., Parmentier, E. M., Wysession, M. E., and Clarke, T. J. (1997), Shear Wave Splitting, Continental Roots, and Patterns of Mantle Flow, MIT-Harvard Workshop on Continental Roots, Cambridge, MA.

    Google Scholar 

  • Hughes, T. J. R. (1984), The Finite Element Method, Prentice-Hall.

    Google Scholar 

  • Karato, S., Wang, Z., Liu, B., and Fujino, K. (1995) Plastic Deformation of Garnets: Systematics and Implication for the Rheology of the Mantle Transition Zone, Earth Planet. Sci. Lett. 130, 13–30.

    Article  Google Scholar 

  • Karato, S.-I. (1998), Seismic Anisotropy in the Deep Mantle, Boundary Layers and the Geometry of Mantle Convection, Pure Appl. Geophys. 151, 565–587.

    Article  Google Scholar 

  • Montagner, J.-P., and Kennett, B. L. N. (1996), How to Reconcile Body-wave and Normal-mode Reference Earth Model, Geophys. J. Int. 125, 229–248.

    Article  Google Scholar 

  • Mühlhaus, H.-B., Dufour, F., Moresi, L., and Hobbs, B. (2002a) A Director Theory for Viscoelastic Folding Instabilities in Multilayered Rock, Int. J. Solids and Structures. 39, 3675–3691.

    Article  Google Scholar 

  • Mühlhaus, H.-B., Moresi, L., Holm, B., and Dufour, F. (2002b), Large Amplitude Folding in Finely Layered Viscoelastic Rock Structures, Pure Appl. Geophys 159, 2311–2333

    Article  Google Scholar 

  • Nicolas, A., and Christensen, N. I. (1987), Formation of anisotropy in upper mantle peridotite. In Composition, Structure and Dynamics of the Lithosphere-Asthenosphere System (Fuch, K. and, Froidevaux, C., (eds), Geodynamics Series 16, 111–123.

    Chapter  Google Scholar 

  • Simons, F. J., Van Der Hilst, R. D., Montagner, J.-P., and Zielhuis, A. (2002), Multimode Rayleigh Wave Inversion for Heterogeneity and Azimuthal Anisotropy of the Australian Upper Mantle, Geophysical J. Int., preprint:http://quake.mit.edu/fjsimons/azimuthal.html

  • Spada, G., Yuen, D. A., Sabadini, R., and Boschi, E. (1991), Lower Mantle Viscosity Constrained by Seismicity around Deglaciated Regions, Nature 351, 53–55.

    Article  Google Scholar 

  • Sulsky, D., Zhou, S.-J., and Schreyer, H. L. (1995), Application of a Particle-in-cell Method to Solid Mechanics, Comput. Phys. Commun. 87, 236–252.

    Article  Google Scholar 

  • Takeuchi, H., Hamano, Y., and Hasegawa, Y. (1968), Rayleigh-and Lowe-wave Discrepancy and the Existence of Magma Pockets in the Upper Mantle, J. Geophys. Res. 73, 3349–3350.

    Article  Google Scholar 

  • Young, T. E., Green, H. W., Hofmeister, A. M., and Walker, D. (1993), Infrared Spectroscopic Investigation of Hydroxil in beta- (Mg, Fe,)2SiO4 and coexisting olivine: Implications for mantle evolution and dynamics, Phys. Chem. Minerals 19, 409–422.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this chapter

Cite this chapter

MÜHlhaus, H.B., Moresi, H.B., CADA, M. (2004). Emergent Anisotropy and Flow Alignment in Viscous Rock. In: Donnellan, A., Mora, P., Matsu’ura, M., Yin, Xc. (eds) Computational Earthquake Science Part II. PAGEOPH Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7875-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7875-3_24

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-7143-2

  • Online ISBN: 978-3-0348-7875-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics