Skip to main content

A Damage Mechanics Model for Aftershocks

  • Chapter
Book cover Computational Earthquake Science Part II

Part of the book series: PAGEOPH Topical Volumes ((PTV))

Abstract

All earthquakes are followed by an aftershock sequence. A universal feature of aftershock sequences is that they decay in time according to the modified Omori’s law, a power-law decay. In this paper we consider the applicability of damage mechanics to earthquake aftershocks. The damage variable introduced in damage mechanics quantifies the deviation of a brittle solid from linear elasticity. We draw an analogy between the metastable behavior of a stressed brittle solid and the metastable behavior of a superheated liquid. The nucleation of microcracks is analogous to the nucleation of bubbles in the superheated liquid. In this paper we obtain a solution for the evolution of damage after the instantaneous application of a constant strain to a rod. We show that the subsequent stress relaxation can reproduce the modified Omori’s law. It is argued that the aftershocks themselves cause random fluctuations similar to the thermal fluctuations associated with phase transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ben-zion, Y. and Lyakhovsky, V.2002, Accelerated Seismic Release and Related Aspects of Seismicity Patterns on Earthquakes Faults, Pure Appl. Geophys. 159, 2385–2412.

    Google Scholar 

  • Buchel, A. and Sethna, J. P.1997, Statistical Mechanics of Cracks: Fluctuations, Breakdown, and Asymptotics of Elastic Theory, Phys. Rev. E 55, 7669–7690

    Google Scholar 

  • Ciliberto, S., Guarino, A., and Scorretti, R.2001, The Effect of Disorder on the Fracture Nucleation Process, Physica D 158, 83–104

    Article  Google Scholar 

  • Das, S. and Scholz, C. H. 1981, Theory of Time-dependent Rupture in the Earth, J. Geophys. Res. 86, 6039–6051.

    Article  Google Scholar 

  • Debenedetti, P. G., Metastable Liquids, Princeton University Press, Princeton 1996.

    Google Scholar 

  • Dieterich, J. H. 1994, A Constitutive Law for Rate of Earthquake Production and its Application to Earthquake Clustering, J. Geophys. Res. 99, 2601–2618.

    Article  Google Scholar 

  • Freund, L. B. Dynamic Fracture Mechanics (Cambridge University Press, Cambridge 1990).

    Book  Google Scholar 

  • Gluzman, S. and Sornette, D. 2001, Self-consistent Theory of Rupture by Progressive Diffuse Damage, Phys. Rev. E 63, 066–129.

    Google Scholar 

  • Guarino, A., Garcimartin, A., and Ciliberto, S.1998, An Experimental Test of the Critical Behavior of Fracture Precursors, Eur. Phys.J.B6, 13–24.

    Google Scholar 

  • Guarino, A., Ciliberto, S., and Garcimartin, A.1999 Failure Time and Microcrack Nucleation, Europhys. Lett. 47, 456.

    Google Scholar 

  • Johansen, A. and Sornette, D.2000, Critical Ruptures, Eur. Phys.J.B18, 163–181.

    Google Scholar 

  • Kachanov, L. M., Introduction to Continuum Damage Mechanics, (Martinus Nijhoff, Dordrecht, Netherlands 1986

    Google Scholar 

  • Krajcinovic, D., Damage Mechanics, (Elsevier, Amsterdam 1996).

    Google Scholar 

  • Kun, F. and Herrmann, H. J.1999, Transition from Damage to Fragmentation in Collision of Solids, Phys. Rev. E 59, 2623–2632.

    Google Scholar 

  • Lemaitre, J. and ChabocheJ.L., Mechanics of Solid Materials, (Cambridge University Press, Cambridge 1990).

    Book  Google Scholar 

  • Lyakhovsky, V., Ben-Zion, Y., and Agnon, A.1997, Distributed Damage, Faulting and Friction, J. Geophys. Res. 102, 27,635–27,649.

    Google Scholar 

  • Mogi, K. (1962), Study of Elastic Shocks Caused by the Fracture of Hetergeneous Materials and its Relations to Earthquake Phenomena, Bull. Earthq. Res. Insti. 40, 125–173.

    Google Scholar 

  • Nakanishi, H.1992, Earthquake Dynamics Driven by a Viscous Fluid, Phys. Rev. A 46, 4689–4692. Nakatani, M. 2001, Conceptual and Physical Clarification of Rate and State Friction: Frictional Sliding as a Thermally Activated RheologyJ.Geophys. Res. 106, 13,347–13,380.

    Google Scholar 

  • Otani, H., Phoenix, S. L., and Petrina, P.1991, Matrix Effects on Lifetime Statistics for Carbon Fibre-epoxy Microcomposites in Creep Rupture, J. Mat. Sci. 26, 1955–1970.

    Article  Google Scholar 

  • Reasenberg, P. A. and Jones, L. M. 1989, Earthquake Hazard after a Mainshock in California, Science, 243, 1173–1176.

    Article  Google Scholar 

  • Rundle, J. B., Klein, W., and Gross, S. 1996, Dynamics of a Traveling Density Wave Model for Earthquakes, Phys. Rev. Lett. 76, 4285–4288.

    Article  Google Scholar 

  • Rundle, J. B., Klein, W., and Gross, S. 1999, Physical Basis for Statistical Patterns in ComplexEarthquake Populations: Models, Predictions and Tests, Pure Appl. Geophys. 155, 575–607.

    Google Scholar 

  • Rundle, J. B., Klein, W., Turcotte, D. L., and Malamud, B. D.2000, Precursory Seismic Activationand Critical Point Phenomena, Pure Appl. Geophys. 157, 2165–2182.

    Google Scholar 

  • Scholz, C. H., The Mechanics of Earthquakes and Faulting, 2nd ed. (Cambridge University Press, Cambridge 2002

    Book  Google Scholar 

  • Selinger, R. L. B., Wang, Z. G., Gelbart, W. M., and Ben-Shaul, A. 1991 Statistical-thermodynamic Approach to Fracture, Phys. Rev. A 43, 4396–4400.

    Google Scholar 

  • Shaw, B. E. 1993, Generalized Omori Law for Aftershocks and Foreshocks from a Simple Dynamics, Geophys. Res. Let. 20, 907–910.

    Article  Google Scholar 

  • Shcherbakov, R. and Turcotte, D. L. 2003, Damage and Self-similarity in Fracture, Theor. Appl. Frac. Mech. in press.

    Google Scholar 

  • Sornette, D. and Andersen, J. V. 1998, Scaling with Respect to Disorder in Time-to-failure, Eur. Phys. J. B 1, 353–357

    Article  Google Scholar 

  • Turcotte, D. L., Newman, W. I., and Shcherbakov, R.2003, Micro-and Macroscopic Models of Rock Fracture, Geophys. J. Int. 152, 718–728.

    Article  Google Scholar 

  • Wu, H. F., Phoenix, S. L., and Schwartz, P. 1988, Temperature Dependence of Lifetime Statistics for Single Kevlar 49 Filaments in Creep-Rupture, J. Mat. Sci. 23, 1851–1860.

    Article  Google Scholar 

  • Zapperi, S., Ray, P., Stanley, H. E., and Vespignani, A. 1997, First-order Transition in the Breakdown of Disordered Media, Phys. Rev. Lett. 78, 1408–1411.

    Article  Google Scholar 

  • Zapperi S., Ray, P., Stanley, H. E., and Vespignani, A.1999, Avalanches in Breakdown and Fracture Processes, Phys. Rev. E 59, 5049–5057.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this chapter

Cite this chapter

Shcherbakov, R., Turcotte, d. (2004). A Damage Mechanics Model for Aftershocks. In: Donnellan, A., Mora, P., Matsu’ura, M., Yin, Xc. (eds) Computational Earthquake Science Part II. PAGEOPH Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7875-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7875-3_19

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-7143-2

  • Online ISBN: 978-3-0348-7875-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics