Skip to main content

A Constitutive Scaling Law for Shear Rupture that is Inherently Scale-dependent, and Physical Scaling of Nucleation Time to Critical Point

  • Chapter
Computational Earthquake Science Part I

Part of the book series: Pageoph Topical Volumes ((PTV))

  • 279 Accesses

Abstract

It is shown that the rupture nucleation length increases up to the critical length with time according to a power law, and that the accelerating phase of nucleation leading up to the critical point is scaled in the framework of fracture mechanics based on slip-dependent constitutive formulation. Geometric irregularity of the rupturing surfaces plays a fundamental role in scaling the accelerating phase of nucleation up to the critical point. A power-law scaling relation between the rupture growth length and the nucleation time to the critical point is derived from theoretical consideration based on laboratory data. This power-law scaling relation has no singularity, and hence it may be useful for the predictive purpose of an imminent, large earthquake.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aki K. (1979), Characterization of Barriers on an Earthquake Fault, J. Geophys. Res. 84, 6140–6148.

    Article  Google Scholar 

  • Aki K. (1984), Asperities, Barriers, Characteristic Earthquakes and Strong Motion Prediction, J. Geophys. Res. 89, 5867–5872.

    Article  Google Scholar 

  • Aki K. (1992), Higher-order Interrelations between Seismogenic Structures and Earthquake Processes, Tectonophysics 211, 1–12.

    Article  Google Scholar 

  • Aki K. (1996), Scale-dependence in Earthquake Phenomena and its Relevance to Earthquake Prediction, Proc. Natl. Acad. Sci. USA 93, 3740–3747.

    Article  Google Scholar 

  • Andrews, D.J. (1976a), Rupture Propagation with Finite Stress in Antiplane Strain, J. Geophys. Res. 81, 3575–3582.

    Article  Google Scholar 

  • Andrews, D,J. (1976b), Rupture Velocity of Plane Strain Shear Cracks, J. Geophys. Res. 81, 5679–5687.

    Article  Google Scholar 

  • Beroza, G.C. and Mikumo, T. (1996), Short Slip Duration in Dynamic Rupture in the Presence of Heterogeneous Fault Properties, J. Geophys. Res. 101, 22449–22460.

    Article  Google Scholar 

  • Bouchon, M. (1997), The State of Stress on Some Faults of the San Andreas System as Inferred from Near-field Strong Motion Data, J. Geophys. Res. 102, 11731–11744.

    Article  Google Scholar 

  • Buff, C.G. and Varnes, D.J. (1993), Predictive Modeling of the Seismic Cycle of the Greater San Francisco Bay Region, J. Geophys. Res. 98, 9871–9883.

    Article  Google Scholar 

  • Day, S.M., Yu, G., and Wald D.J. (1998), Dynamic Stress Changes during Earthquake Rupture, Bull. Seismol. Soc. Am. 88, 512–522.

    Google Scholar 

  • Ellsworth,W.L. and Beroza,G.C. (1995), Seismic Evidence for an Earthquake Nucleation Phase, Science 268, 851–855.

    Article  Google Scholar 

  • Fujii, Y. and Matsuura, M. (2000), Regional Difference in Scaling Laws for Large Earthquakes and its Tectonic Implication, Pure Appl. Geophys. 157, 2283–2302.

    Google Scholar 

  • Ide, S. and Takeo, M. (1997), Determination of Constitutive Relations of Fault Slip based on Seismic Wave Analysis, J. Geophys. Res. 102, 27379–27391.

    Article  Google Scholar 

  • Kanamori,H. (1981) The nature of seismic patterns before large earthquakes. In Earthquake Prediction: An International Review (eds: D. W. Simpson and P. G. Richards) ( AGU, Washington, DC.) pp. 1–19.

    Chapter  Google Scholar 

  • Kanamori, IH. and Stewarf,G.S. (1978), Seismological Aspects of the Guatemala Earthquake of February 4, 1976, J. Geophys. Res. 83, 3427–3434.

    Article  Google Scholar 

  • Kato A., Ohnaka M., and Mochizuki H. (2003), Constitutive Properties for the Shear Failure of Intact Granite in Seismogenic Environments, J. Geophys. Res. 108(B1), 2060, doi: 10.1029/2001JB000791.

    Article  Google Scholar 

  • Kato, A., Yoshida, S., Ohnaka, M., and Mochizuki, H. (2004), The Dependence of Constitutive Properties on Temperature and Effective Normal Stress in Seismogenic Environments, Pure Appl. Geophys. 161, 9/10.

    Google Scholar 

  • Knopof, FL. (1996), A Selective Phenomenology of the Seismicity of Southern California, Proc. Nail. Acad. Sci. USA 93, 3756–3763.

    Article  Google Scholar 

  • Matsuura, M. and Satq, T. (1997), Loading Mechanism and Scaling Relations of Large Interplate Earthquakes, Tectonophysics 277, 189–198.

    Article  Google Scholar 

  • Ohnaka, M. (2000), A Physical Scaling Relation between the Size of an Earthquake and its Nucleation Zone Size, Pure Appl. Geophys. 157, 2259–2282.

    Google Scholar 

  • Ohnaka, M. (2003), A Constitutive Scaling Law and a Unified Comprehension for Frictional Slip Failure, Shear Fracture of Intact Rock, and Earthquake Rupture, J. Geophys. Res. 108(B2), 2080, doi:10. 1029/ 2000JB000123.

    Article  Google Scholar 

  • Ohnaka, M. and Matsuura M. (2002), The Physics of Earthquake Generation (University of Tokyo Press, Tokyo) 378 pp.

    Google Scholar 

  • Ohnak, AM. and Shen L.-f. (1999), Scaling of the Shear Rupture Process from Nucleation to Dynamic Propagation: Implications of Geometric Irregularity of the Rupturing Surfaces, J. Geophys. Res. 104, 817–844.

    Article  Google Scholar 

  • Ohnaka, M. and Yamashita T. (1989), A Cohesive Zone Model for Dynamic Shear Faulting Based on Experimentally Inferred Constitutive Relation and Strong Motion Source Parameters, J. Geophys. Res. 94, 4089–4104.

    Article  Google Scholar 

  • Ohnaka, M., Akatsu, M., Mochizuki, H., Odedra, A., Tagashira, F., and Yamamoto, Y. (1997), A Constitutive Lawfor the Shear Failure of Rock under Lithospheric Conditions, Tectonophysics 277, 1–27.

    Article  Google Scholar 

  • Okubo, P.G. and Dieterich,J.H. (1986), State variable fault constitutive relations for dynamic slip. In Earthquake Source Mechanics (eds. S. Das, J. Boatwright, and C. H. Scholz),AGU Geophys. Monograph 37 (Maurice Ewing Volume 6), pp. 25–35.

    Chapter  Google Scholar 

  • Papageorgiou, S. and Aki, K. (1983), A Specific Barrier Model for the Quantitative Description of Inhomogeneous Faulting and the Prediction of Strong Ground Motion, Part II. Applications of the Model, Bull. Seismol. Soc. Am. 73, 953–978.

    Google Scholar 

  • Romanowicz, B. (1992), Strike-slip Earthquakes on Quasi-vertical Transcurrent Faults: Inferences for General Scaling Relations, Geophys. Res. Lett. 19, 481–484.

    Google Scholar 

  • Scholz, C.H. (1982), Scaling Laws for Large Earthquakes: Consequences for Physical Models, Bull. Seismol. Soc. Am. 72, 1–14.

    Google Scholar 

  • Scholz,C.H. (1994), A Reappraisal of Large Earthquake Scaling, Bull. Seismol. Soc. Am. 84, 215–218.

    Google Scholar 

  • Shimazaki, K. (1986), Small and Large Earthquakes: The Effects of the thickness of seismogenic layer and the free surface. In Earthquake source Mechanics(eds: S. Das, J. Boatwright, and C. H. Scholz), AGU Geophys. Monograph 37 (Maurice Ewing Volume 6), pp. 209–216.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this chapter

Cite this chapter

Ohnaka, M. (2004). A Constitutive Scaling Law for Shear Rupture that is Inherently Scale-dependent, and Physical Scaling of Nucleation Time to Critical Point. In: Donnellan, A., Mora, P., Matsu’ura, M., Yin, Xc. (eds) Computational Earthquake Science Part I. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7873-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7873-9_7

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-7142-5

  • Online ISBN: 978-3-0348-7873-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics