Peptide and steroid hormone receptors as drug targets for enhancement of learning and memory performance

  • Joe L. MartinezJr.
  • Kenira Thompson
  • Melanie P. McFadyen-Leussis
  • Stephen C. Heinrichs
Part of the Milestones in Drug Therapy MDT book series (MDT)


“Then Dr Strauss said Charlie even if this fales your making a grate contribyushun to sience. This experimint has been successful on lots of animals but its never bin tried on a humen being. You will be the first. After the operashun Im gonna try to be smart. Im gonna try awful hard.” (sic) p. 8, Flowers For Angernon [1]


Nerve Growth Factor Spatial Memory Passive Avoidance Basal Forebrain Corticotropin Release Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Keyes D (1959) Flowers for Algernon. New York: Bantam BooksGoogle Scholar
  2. 2.
    Koob GF (1987) Neuropeptides and memory. In: LL Iversen, SD Iversen (eds): Handbook of Psychopharmacology, Plenum, New York, 531–573CrossRefGoogle Scholar
  3. 3.
    White NM, Salinas JA (1998) Pharmacology approaches to the study of learning and memory. In:.JL Martinez Jr, R Kesner (eds): Neurobiology of learning and memory,Academic Press, San Diego, 143–176CrossRefGoogle Scholar
  4. 4.
    Lupien SJ, de Leon M, de Santi S, Convit A, Tarshish C, Nair NPV, Thakur M, McEwen BS, Hauger RL, Meaney Mt (1998) Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nature Neurosci 1(1): 69–73PubMedCrossRefGoogle Scholar
  5. 5.
    Martinez JL Jr, Schulteis G, Weinberger SB (1991) How to increase and decrease the strength of memory traces: The effects of drugs and hormones. In: JLj Martinez, RP Kesner (eds): Learning and memory: A biological view, Academic Press: New York, 149–198Google Scholar
  6. 6.
    Squire LR, Davis HP (1981) The pharmacology of memory: A neurobiological perspective. Ann Rev Pharmacol Toxicol 21(323): 323–356Google Scholar
  7. 7.
    Martinez JLj (1986) Memory: Drugs and hormones. In: JLj Martinez, RP Kesner (eds): Learning and memory: A biological view, Academic Press: New YorkGoogle Scholar
  8. 8.
    Krieger DT (1983) Brain peptides: What, where, and why? Science 222 (4627): 975–985PubMedCrossRefGoogle Scholar
  9. 9.
    Martinez JL Jr, Jensen RA, McGaugh JL (1981) Attenuation of experimentally-induced amnesia. Prog Neurobiol 16(2): 155–186PubMedCrossRefGoogle Scholar
  10. 10.
    Martinez JL Jr, Jensen RA, McGaugh JL (1983) Facilitation of memory consolidation. In: JA Deutsch (ed.): The Physiological Basis of Memory. Academic Press, New York, 49–70Google Scholar
  11. 11.
    Ettenberg A, Van der Kooy D, Le Moal M, Koob GF, Bloom FE (1983) Can aversive properties of (peripherally-injected) vasopressin account for its putative role in memory. Behav Brain Res 7: 331–350PubMedCrossRefGoogle Scholar
  12. 12.
    Koob GF (1987) Learning and Memory: Principles and findings with a focus on vasopressin. Durham, North CarolinaGoogle Scholar
  13. 13.
    Sahgal A (1984) A critique of the vasopressin-memory hypothesis. Psychopharmacol (Berl) 83(3): 215–228CrossRefGoogle Scholar
  14. 14.
    Squire LR (1987) Memory and Brain. Oxford: Oxford University PressGoogle Scholar
  15. 15.
    Martinez JL Jr, Derrick BE (1996) Long-term potentiation and learning. Annu Rev Psychol 47: 173–203PubMedCrossRefGoogle Scholar
  16. 16.
    Silva AJ (2003) Molecular and cellular cognitive studies of the role of synaptic plasticity in memory. J Neurobiol 54(1): 224–237PubMedCrossRefGoogle Scholar
  17. 17.
    Meisenberg G, Simmons WH (1983) Centrally mediated effects of neurohypophyscal hormones. Neurosci Biobehav Rev 7(2): 263–280PubMedCrossRefGoogle Scholar
  18. 18.
    Dantzer R, Bluthe RM (1992) Vasopressin involvement in antipyresis, social communication, and social recognition: A synthesis. Crit Rev Neurobiol 6(4): 243–255PubMedGoogle Scholar
  19. 19.
    Dantzer R (1998) Vasopressin, gonadal steroids and social recognition. Frog Brain Res 119: 409–414CrossRefGoogle Scholar
  20. 20.
    De Wied D (1984) The importance of vasopressin in memory. Trends in Neuroscience 7(62): 62–64CrossRefGoogle Scholar
  21. 21.
    Mishima K, Tsukikawa H, Inada K, Fujii M, Iwasaki K, Matsumoto Y, Abe K, Egawa T, Fujiwara M (2001) Ameliorative effect of vasopressin-(4–9) through vasopressin V(1A) receptor on scopolamine-induced impairments of rat spatial memory in the eight-arm radial maze. Eur J Pharmacol 427(1): 43–52PubMedCrossRefGoogle Scholar
  22. 22.
    Taga C, Sugimoto Y, Nishiga M, Fujii Y, Kamei C (2001) Effects of vasopressin on histamine H(1) receptor antagonist-induced spatial memory deficits in rats. Eur J Pharmacol 423(2–3): 167–170PubMedCrossRefGoogle Scholar
  23. 23.
    Tanabe S, Shishido Y, Nakayama Y, Furushiro M, Hashimoto S, Terasaki T, Tsujimoto G, Yokokura T (1999) Effects of arginine-vasopressin fragment 4–9 on rodent cholinergic systems. Pharmacol Biochem Behav 63(4): 549–553PubMedCrossRefGoogle Scholar
  24. 24.
    Dietrich A, Taylor JT, Passmore CE (2001) AVP (4–8) improves concept learning in PFC-damaged but not hippocampal-damaged rats. Brain Res 919(1): 41–47PubMedCrossRefGoogle Scholar
  25. 25.
    Hori E, Uwano T, Tamura R, Miyake N, Nishijo H, Ono T (2002) Effects of a novel arginine-vasopressin derivative, NC-1900, on the spatial memory impairment of rats with transient forebrain ischemia. Brain Res Copt Brain Res 13(1): 1–15CrossRefGoogle Scholar
  26. 26.
    Jolles J (1983) Vasopressin-like peptides and the treatment of memory disorders in man. Prog Brain Res 60: 169–182PubMedCrossRefGoogle Scholar
  27. 27.
    Boccia MM, Baratti CM (2000) Involvement of central cholinergic mechanisms in the effects of oxytocin and an oxytocin receptor antagonist on retention performance in mice. Neurobiol Learn Mem 74(3): 217–228PubMedCrossRefGoogle Scholar
  28. 28.
    Ferguson JN, Young L.J, Insel TR (2002) The neuroendocrine basis of social recognition. Front Neuroendocrinol 23(2): 200–224PubMedCrossRefGoogle Scholar
  29. 29.
    Young LJ (2002) The neurobiology of social recognition, approach, and avoidance. Biol Psychiatry 51(1): 18–26PubMedCrossRefGoogle Scholar
  30. 30.
    Ferguson JN, Young LJ, Insel TR (2002) The neuroendocrine basis of social recognition. Front Neuroendocrinol 23(2): 200–224PubMedCrossRefGoogle Scholar
  31. 31.
    Frick KM, Price DL, Koliatsos VE, Markowska AL (1997) The effects of nerve growth factor on spatial recent memory in aged rats persist after discontinuation of treatment. J Neurosci 17(7): 2543–2550PubMedGoogle Scholar
  32. 32.
    Markowska AL, Price D, Koliatsos VE (1996) Selective effects of nerve growth factor on spatial recent memory as assessed by a delayed nonmatching-to-position task in the water maze. J Neurosci 16(10): 3541–3548PubMedGoogle Scholar
  33. 33.
    Chen KS, Masliah E, Mallory M, Gage FH (1995) Synaptic loss in cognitively impaired aged rats is ameliorated by chronic human nerve growth factor infusion. Neurosci 68(1): 19–27CrossRefGoogle Scholar
  34. 34.
    Lukoyanov NV, Pereira PA, Paula-Barbosa MM, Cadete-Leite A (2003) Nerve growth factor improves spatial learning and restores hippocampal cholinergic fibers in rats withdrawn from chronic treatment with ethanol. Exp Brain Res 148(1): 88–94PubMedCrossRefGoogle Scholar
  35. 35.
    Gustilo MC, Markowska AL, Breckler SJ, Fleischman CA, Price DL, Koliatsos VE (1999) Evidence that nerve growth factor influences recent memory through structural changes in septohippocampal cholinergic neurons. J Comp Neurol 405(4): 491–507PubMedCrossRefGoogle Scholar
  36. 36.
    Fischer W, Sirevaag A, Wiegand SJ, Lindsay RM, Bjorklund A (1994) Reversal of spatial memory impairments in aged rats by nerve growth factor and neurotrophins 3 and 4/5 but not by brain-derived neurotrophic factor. Proc Natl Acad Sci USA 91(18): 8607–8611PubMedCrossRefGoogle Scholar
  37. 37.
    Woolf NJ, Milov AM, Schweitzer ES, Roghani A (2001) Elevation of nerve growth factor and antisense knockdown of TrkA receptor during contextual memory consolidation. J Neurosci 21(3): 1047–1055PubMedGoogle Scholar
  38. 38.
    Fiore M, Triaca V, Amendola T, Tirassa P, Aloe L (2002) Brain NGF and EGF administration improves passive avoidance response and stimulates brain precursor cells in aged male mice. Physiol Behav 77(2–3): 437–443PubMedCrossRefGoogle Scholar
  39. 39.
    Calamandrei G, Valanzano A, Ricceri L (2002) NGF induces appearance of adult-like response to spatial novelty in 18-day male mice. Behav Brain Res 136(1): 289–298PubMedCrossRefGoogle Scholar
  40. 40.
    Koliatsos VE, Clatterbuck RE, Nauta HJ, Knusel B, Burton LE, Hefti FF, Mobley WC, Price DL (1991) Human nerve growth factor prevents degeneration of basal forebrain cholinergic neurons in primates. Ann Neurol 30(6): 831–840PubMedCrossRefGoogle Scholar
  41. 41.
    Smith DE, Roberts J, Gage FH, Tuszynski MH (1999) Age-associated neuronal atrophy occurs in the primate brain and is reversible by growth factor gene therapy. Proc Natl Acad Sci USA 96(19): 10893–10898PubMedCrossRefGoogle Scholar
  42. 42.
    Tyler WJ, Alonso M, Bramham CR, Pozzo-Miller LD (2002) From acquisition to consolidation: On the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning. Learn Mem 9(5): 224–237PubMedCrossRefGoogle Scholar
  43. 43.
    Yamada K, Mizuno M, Nabeshima T (2002) Role for brain-derived neurotrophic factor in learning and memory. Life Sci 70(7): 735–744PubMedCrossRefGoogle Scholar
  44. 44.
    Croll SD, Ip NY, Lindsay RM, Wiegand SJ (1998) Expression of BDNF and trkB as a function of age and cognitive performance. Brain Res 812(1–2): 200–208PubMedCrossRefGoogle Scholar
  45. 45.
    Schaaf MJ, Workel JO, Lesscher HM, Vreugdenhil E, Oitzl MS, de Kloet ER (2001) Correlation between hippocampal BDNF mRNA expression and memory performance in senescent rats. Brain Res 915(2): 227–233PubMedCrossRefGoogle Scholar
  46. 46.
    Tokuyama W, Okuno H, Hashimoto T, Xin Li Y, Miyashita Y (2000) BDNF up-regulation during declarative memory formation in monkey inferior temporal cortex. Nature Neurosci 3(11): 1134–1142PubMedCrossRefGoogle Scholar
  47. 47.
    Johnston AN, Rose SP (2001) Memory consolidation in day-old chicks requires BDNF but not NGF or NT-3; an antisense study. Brain Res Mol Brain Res 88(1–2): 26–36PubMedCrossRefGoogle Scholar
  48. 48.
    Takei N, Kuramoto H, Endo Y, Hatanaka H (1997) NGF and BDNF increase the immunoreactivity of vesicular acetylcholine transporter in cultured neurons from the embryonic rat septum. Neurosci Lett 226(3): 207–209PubMedCrossRefGoogle Scholar
  49. 49.
    Heinrichs SC (1999) Stress-axis, coping and dementia: gene-manipulation studies. Trends in Pharmacol Sci 20: 311–315CrossRefGoogle Scholar
  50. 50.
    Luine VN, Spencer RL, McEwen BS (1993) Effects of chronic corticosterone ingestion on spatial memory performance and hippocampal serotonergic function. Brain Res 616: 65–70PubMedCrossRefGoogle Scholar
  51. 51.
    Gold PE, van Buskirk R (1976) Enhancement and impairment of memory processes with post-trial injections of adrenocorticotrophic hormone. Behav Biol 16: 387–400PubMedCrossRefGoogle Scholar
  52. 52.
    Ohl F, Fuchs E (1999) Differential effects of chronic stress on memory processes in the tree shrew. Brain Res Cogn Brain Res 7(3): 379–387PubMedCrossRefGoogle Scholar
  53. 53.
    Kirschbaum C, Wolf OT, May M, Wippich W, Hellhammer DH (1996) Stress-and treatment-induced elevations of cortisol levels associated with impaired declarative memory in healthy adults. Life Sci 58(17): 1475–1483PubMedCrossRefGoogle Scholar
  54. 54.
    De Wied D, Jolles J (1982) Neuropeptides derived from pro-opiocortin: Behavioral, physiological and neurochemical effects. Physiol Rev 62: 976–1059PubMedGoogle Scholar
  55. 55.
    Kumar KB, Karanth KS (1996) Alpha-helical CRF blocks differential influence of corticotropin releasing factor (CRF) on appetitive and aversive memory retrieval in rats. J Neural Transm 103: 1117–1126PubMedCrossRefGoogle Scholar
  56. 56.
    McGaugh JL (1989) Involvement of hormonal and neuromodulatory systems in the regulation of memory storage. Ann Rev Neurosci 12: 255–287CrossRefGoogle Scholar
  57. 57.
    Dachir S, Kadar T, Robinzon B, Levy A (1993) Cognitive deficits induced in young rats by longterm corticosterone administration. Behav Neural Biol 60: 103–109PubMedCrossRefGoogle Scholar
  58. 58.
    Martinez JL Jr, Jensen RA, Messing RB, Rigter H, McGaugh JL (1981) Endogenous Peptides and Learning and Memory Processes. In: JL McGaugh, JC Fentress, JP Hegmann (eds): Behavioral Biology: An International Series, Academic Press, New YorkGoogle Scholar
  59. 59.
    Gaillard AW, Varey CA (1979) Some effects of an ACTH 4–9 analog (Org 2766) on human performance. Physiol Behav 23(1): 79–84PubMedCrossRefGoogle Scholar
  60. 60.
    Heinrichs SC, De Souza EB (2001) Corticotropin-releasing factor in brain: Executive gating of neuroendocrine and functional outflow. In: BS McEwen (ed.): Handbook of Physiology. Oxford University Press, New York, 125–137Google Scholar
  61. 61.
    Akwa Y, Purdy RH, Koob GF, Britton KT (1999) The amygdala mediates the anxiolytic-like effect of the neurosteroid allopregnanolone in rat. Behav Brain Res 106(1–2): 119–125PubMedCrossRefGoogle Scholar
  62. 62.
    Sahgal A, Wright C, Edwardson JA, Keith AB (1983) Corticotrophin releasing factor is more potent than some corticotrophin-related peptides in affecting passive avoidance behaviour in rats. Neurosci Lett 36: 81–86PubMedCrossRefGoogle Scholar
  63. 63.
    Deffenbacher KA (1983) The influence of arousal on reliability of testimony, Chapter 13. In: SMA Lloyd-Bostock, BR Clifford (eds): Evaluating Witness Evidence. John Wiley and Sons Ltd., New York, 235–249Google Scholar
  64. 64.
    Honour LC, White MH (1988) Pre-and postnatally administered ACTH, Organon 2766 and CRF facilitate or inhibit active avoidance task performance in young adult mice. Peptides 9(4): 745–750PubMedCrossRefGoogle Scholar
  65. 65.
    De Wied D, Bohus B (1979) Modulation of memory processes by neuropeptides of hypothalamic-neurohypophyseal origin. Raven Press,New York (139): 139–149Google Scholar
  66. 66.
    Contarino A, Heinrichs SC, Gold LH (1999) Understanding CRF neurobiology: contribution from mutant mice. Neuropeptides 33: 1–12PubMedCrossRefGoogle Scholar
  67. 67.
    Steckler T, Holsboer F (1999) Corticotropin-releasing hormone receptor subtypes and emotion. Biol Psychiatry 46(11): 1480–1508PubMedCrossRefGoogle Scholar
  68. 68.
    Deak T, Nguyen KT, Ehrlich AL, Watkins LR, Spencer RL, Maier SF, Licinio J, Wong M-L, Chrousos GP, Webster E et al. (1999) The impact of the nonpeptide corticotropin-releasing hormone antagonist antalarmin on behavioral and endocrine responses to stress. Endocrinology 140(1): 79–86PubMedCrossRefGoogle Scholar
  69. 69.
    Eckart K, Radulovic J, Radulovic M, Jahn O, Blank T, Stiedl O, Spiess J (1999) Actions of CRF and its analogs. Current Medicinal Chemistry 6(11): 1035–1053PubMedGoogle Scholar
  70. 70.
    Zorrilla EP, Schulteis G, Ling N, Koob GF, De Souza EB (2001) Performance enhancing effects of CRF-BP ligand inhibitors. Neuroreport 12: 1231–1234PubMedCrossRefGoogle Scholar
  71. 71.
    Behan DP, De Souza EB, Lowry PJ, Potter E, Sawchenko P, Vale WW (1995) Corticotropin releasing factor (CRF) binding protein: A novel regulator of CRF and related peptides. Front Neuroendocrinol 16: 362–382PubMedCrossRefGoogle Scholar
  72. 72.
    Heinrichs SC, Lapsansky J, Lovenberg TW, De Souza EB, Chalmers DT (1997) Corticotropinreleasing factor CRF1, but not CRF2, receptors mediate anxiogenic-like behavior. Regulatory Peptides 71: 15–21PubMedCrossRefGoogle Scholar
  73. 73.
    Bonaz B, Rivest S (1998) Effect of a chronic stress on CRF neuronal activity and expression of its type 1 receptor in the rat brain. American J Physiology 275(5 PART 2): R1438–R1449Google Scholar
  74. 74.
    Wang HL, Wayner MJ, Chai CY, Lee EHY (1998) Corticotropin-releasing factor produces a long-lasting enhancement of synaptic efficacy in the hippocampus. Eur J Neurosci 10: 3428–3437PubMedCrossRefGoogle Scholar
  75. 75.
    Fuchs E, Fltigge G, Ohl F, Lucassen P, Vollmann-Honsdorf GK, Michaelis TM (2001) Psychosocial stress, glucocorticoids, and the structural alterations in the tree shrew hippocampus. Physiol Behav 73: 285–291PubMedCrossRefGoogle Scholar
  76. 76.
    Buggy J, Hewitt CD, Kemeny G, Davis JM, Stock H, Hand GA (1999) Hypothalamic and amygdalar corticotropin-releasing factor (CRF) after fatiguing exercise. Society for Neuroscience Abstracts 25(1–2): 63Google Scholar
  77. 77.
    De Souza E, Whitehouse PJ, Kuhar MJ, Price DL, Vale W (1986) Reciprocal changes in corticotropin-releasing factor (CRF)-like Alzheimer’s disease. Nature 319(593): 593–595PubMedCrossRefGoogle Scholar
  78. 78.
    Wright JW, Harding JW (1995) Brain angiotensin receptor subtypes AT1, AT2, and AT4 and their functions. Regul Pept 59(3): 269–295PubMedCrossRefGoogle Scholar
  79. 79.
    Wright JW, Harding JW (1997) Important role for angiotensin III and IV in the brain reninangiotensin system. Brain Res Rev 25(1): 96–124PubMedCrossRefGoogle Scholar
  80. 80.
    Gard PR (2002) The role of angiotensin II in cognition and behaviour. Eur J Pharmacol 438(1–2): 1–14PubMedCrossRefGoogle Scholar
  81. 81.
    Karwowska-Polecka W, Kulakowska A, Wisniewski K, Braszko JJ (1997) Losartan influences behavioural effects of angiotensin 11(3–7) in rats. Pharmacol Res 36(4): 275–283PubMedCrossRefGoogle Scholar
  82. 82.
    Tchekalarova J, Kambourova T, Georgiev V (2002) Interaction of angiotensin II and III with adenosine A(1) receptor-related drugs in passive avoidance conditioning in rats. Behav Brain Res 129(1–2): 61–64PubMedCrossRefGoogle Scholar
  83. 83.
    Wright JW, Stubley L, Pederson ES, Kramar EA, Hanesworth JM, Harding JW (1999) Contributions of the brain angiotensin IV-AT4 receptor subtype system to spatial learning. J Neurosci 19(10): 3952–3961PubMedGoogle Scholar
  84. 84.
    Lee J, Chai SY, Mendelsohn FA, Morris MT Allen AM (2001) Potentiation of cholinergic transmission in the rat hippocampus by angiotensin IV and LVV-hemorphin-7. Neuropharmacol 40(4): 618–623CrossRefGoogle Scholar
  85. 85.
    Chai SY, Bastias MA, Clune EF, Matsacos DJ, Mustafa T, Lee JH, McDowall SG, Paxinos G, Mendelsohn FA, Albiston AL (2000) Distribution of angiotensin IV binding sites (AT4 receptor) in the human forebrain, midbrain and pons as visualised by in vitro receptor autoradiography. J Chem Neuroanat 20(3–4): 339–348PubMedCrossRefGoogle Scholar
  86. 86.
    Barnes JM, Barnes NM, Costall B, Horovitz ZP, Ironside JW, Naylor RJ, Williams TJ (1990) Angiotensin II inhibits acetylcholine release from human temporal cortex: Implications for cognition. Brain Res 507(2): 341–343PubMedCrossRefGoogle Scholar
  87. 87.
    Barnes JM, Barnes NM, Costall B, Horovitz ZP, Ironside JW, Naylor RJ, Williams TJ (1990) Angiotensin II inhibits cortical cholinergic function: Implications for cognition. J Cardiovasc Pharmacol 16(2): 234–238PubMedCrossRefGoogle Scholar
  88. 88.
    Voits M, Hasenohrl RU, Huston JP, Fink H (2001) Repeated treatment with cholecystokinin octapeptide improves maze performance in aged Fischer 344 rats. Peptides 22(8): 1325–1330PubMedCrossRefGoogle Scholar
  89. 89.
    Katsuura G, Itoh S (1986) Passive avoidance deficit following intracerebroventricular administration of cholecystokinin tetrapeptide amide in rats. Peptides 7(5): 809–814PubMedCrossRefGoogle Scholar
  90. 90.
    Itoh S, Takashima A, Igano K, Inouye K (1989) Memory effect of caerulein and its analogs in active and passive avoidance responses in the rat. Peptides 10(4): 843–848PubMedCrossRefGoogle Scholar
  91. 91.
    Itoh S, Takashima A, Katsuura G (1988) Effect of cholecystokinin tetrapeptide amide on the metabolism of 5-hydroxytryptamine in the rat brain. Neuropharmacol 27(4): 427–431CrossRefGoogle Scholar
  92. 92.
    Takashima M, Katoh Y, Takeuchi Y, Takahashi K (1991) Effect of subchronic administration of methylcobalamin on the acetylcholine and choline content in the brain and locomotor activity in rats. Jpn J Psychiatry Neurol 45(1): 173–175PubMedGoogle Scholar
  93. 93.
    Itoh S, Takashima A, Maeda Y (1992) Protective effect of cerulein on memory impairment induced by protein synthesis inhibitors in rats. Peptides 13(5): 1007–1012PubMedCrossRefGoogle Scholar
  94. 94.
    Nomoto S, Miyake M, Ohta M, Funakoshi A, Miyasaka K (1999) Impaired learning and memory in OLETF rats without cholecystokinin (CCK)-A receptor. Physiol Behav 66(5): 869–872PubMedCrossRefGoogle Scholar
  95. 95.
    Lena I, Simon H, Rogues BP, Dauge V (1999) Opposing effects of two CCK(B) agonists on the retrieval phase of a two-trial memory task after systemic injection in the rat. Neuropharmacol 38(4): 543–553CrossRefGoogle Scholar
  96. 96.
    Lena I, Dh tel H, Garbay C, Dauge V (2001) Involvement of D2 dopamine receptors in the opposing effects of two CCK-B agonists in a spatial recognition memory task: Role of the anterior nucleus accumbens. Psychopharmacol 153(2): 170–179CrossRefGoogle Scholar
  97. 97.
    Sebret A, Lena I, Crete D, Matsui T, Rogues BP, Dauge V (1999) Rat hippocampal neurons are critically involved in physiological improvement of memory processes induced by cholecystokinin-B receptor stimulation. J Neurosci 19(16): 7230–7237PubMedGoogle Scholar
  98. 98.
    Taghzouti K, Lena I, Dellu F, Rogues BP, Dauge V, Simon H (1999) Cognitive enhancing effects in young and old rats of pBC264, a selective CCK(B) receptor agonist. Psychopharmacol 143(2): 141–149CrossRefGoogle Scholar
  99. 99.
    Weller A, Tsitolovskya L, Gispan IH, Rabinovitz S (2001) Examining the role of cholecystokinin in appetitive learning in the infant rat. Peptides 22(8): 1317–1323PubMedCrossRefGoogle Scholar
  100. 100.
    Derrien M, Dauge V, Blommaert A, Rogues BP (1994) The selective CCK-B agonist, BC 264, impairs socially reinforced memory in the three-panel runway test in rats. Behav Brain Res 65(2): 139–146PubMedCrossRefGoogle Scholar
  101. 101.
    Tirassa P, Stenfors C, Lundeberg T, Aloe L (1998) Cholecystokinin-8 regulation of NGF con-centrations in adult mouse brain through a mechanism involving CCK(A) and CCK(B) receptors. Br J Pharmacol 123(6): 1230–1236PubMedCrossRefGoogle Scholar
  102. 102.
    Tirassa P, Aloe L, Stenfors C, Turrini P, Lundebcrg T (1999) Cholecystokinin-8 protects central cholinergic neurons against fimbria-fornix lesion through the up-regulation of nerve growth factor synthesis. Proc Natl Acad Sci USA 96(11): 6473–6477PubMedCrossRefGoogle Scholar
  103. 103.
    Sugaya K, Takahashi M, Kubota K (1992) Cholecystokinin protects cholinergic neurons against basal forebrain lesion. Jpn J Pharmacol 59(1): 125–128PubMedCrossRefGoogle Scholar
  104. 104.
    Robinson JK, Crawley JN (1994) Analysis of anatomical sites at which galanin impairs delayed nonmatching to sample in rats. Behav Neurosci 108(5): 941–950PubMedCrossRefGoogle Scholar
  105. 105.
    Crawley JN (1993) Functional interactions of galanin and acetylcholine: Relevance to memory and Alzheimer’s disease. Behav Brain Res 57(2): 133–141PubMedCrossRefGoogle Scholar
  106. 106.
    Sundstrom E, Archer T, Melander T, Hokfelt T (1988) Galanin impairs acquisition but not retrieval of spatial memory in rats studied in the Morris swim maze. Neurosci Lett 88(3): 331–335PubMedCrossRefGoogle Scholar
  107. 107.
    Ogren SO, Kehr J, Schott PA (1996) Effects of ventral hippocampal galanin on spatial learning and on in vivo acetylcholine release in the rat. Neuroscience 75(4): 1127–1140PubMedCrossRefGoogle Scholar
  108. 108.
    Ogren SO, Schott PA, Kehr J, Misane I, Razani H (1999) Galanin and learning. Brain Res 848(1–2): 174–182PubMedCrossRefGoogle Scholar
  109. 109.
    Thorsell A, Heilig M (2002) Diverse functions of neuropeptide Y revealed using genetically modified animals. Neuropeptides 36(2–3): 182–193PubMedCrossRefGoogle Scholar
  110. 110.
    Caberlotto L, Fuxe K, Rimland TM, Sedvall G, Hurd YL (1998) Regional distribution of neuropeptide Y Y2 receptor messenger RNA in the human post mortem brain. Neuroscience 86(1): 167–178PubMedCrossRefGoogle Scholar
  111. 111.
    Dumont Y, Jacques D, Bouchard P, Quirion R (1998) Species differences in the expression and distribution of the neuropeptide Y Yl, Y2, Y4, and Y5 receptors in rodents, guinea pig, and primates brains. J Comp Neurol 402(3): 372–384PubMedCrossRefGoogle Scholar
  112. 112.
    Gustafson EL, Smith KE, Durkin MM, Walker MW, Gerald C, Weinshank R, Branchek TA (1997) Distribution of the neuropeptide Y Y2 receptor mRNA in rat central nervous system. Brain Res Mol Brain Res 46(1–2): 223–235PubMedCrossRefGoogle Scholar
  113. 113.
    Morley JE, Flood JF (1990) Neuropeptide Y and memory processing. Ann N Y Acad Sci 611: 226–231PubMedCrossRefGoogle Scholar
  114. 114.
    Bouchard P, Maurice T, St-Pierre S, Privat A, Quirion R (1997) Neuropeptide Y and the calcitonin gene-related peptide attenuate learning impairments induced by MK-801 via a sigma receptor-related mechanism. Eur J Neurosci 9(10): 2142–2151PubMedCrossRefGoogle Scholar
  115. 115.
    Parker E, Van Heek M, Stamford A (2002) Neuropeptide Y receptors as targets for anti-obesity drug development: Perspective and current status. Eur J Pharmacol 440(2–3): 173–187PubMedCrossRefGoogle Scholar
  116. 116.
    Redrobe JP, Dumont Y, St-Pierre JA, Quirion R (1999) Multiple receptors for neuropeptide Y in the hippocampus: Putative roles in seizures and cognition. Brain Res 848(1–2): 153–166PubMedCrossRefGoogle Scholar
  117. 117.
    Sheikh SP, Feldthus N, Orkild H, Goke R, McGregor GP, Turner D, Moller M, Stuenkel EL (1998) Neuropeptide Y2 receptors on nerve endings from the rat neurohypophysis regulate vasopressin and oxytocin release. Neuroscience 82(1): 107–115PubMedCrossRefGoogle Scholar
  118. 118.
    Silva AP, Cavadas C, Grouzmann E (2002) Neuropeptide Y and its receptors as potential therapeutic drug targets. Clin Chim Acta 326(1–2): 3–25PubMedCrossRefGoogle Scholar
  119. 119.
    Pasternak GW (1988) Studies of multiple morphine and enkephalin receptors: Evidence for mul receptors. Adv Exp Med Biol 236: 81–93Google Scholar
  120. 120.
    Pasternak GW (1988) Multiple morphine and enkephalin receptors and the relief of pain. JAMA 259(9): 1362–1367PubMedCrossRefGoogle Scholar
  121. 121.
    Akil H, Watson SJ, Young E, Lewis ME, Khachaturian H, Walker TM (1984) Endogenous opioids: Biology and function. Annu Rev Neurosci 7: 223–255PubMedCrossRefGoogle Scholar
  122. 122.
    Martinez JL Jr, Olson K, Hilston C (1984) Opposite effects of Met-enkephalin and Leuenkephalin on a discriminated shock-escape task. Behav Neurosci 98(3): 487–495PubMedCrossRefGoogle Scholar
  123. 123.
    Izquierdo I, Dias RD, Souza DO, Carrasco MA, Elisabetsky E, Perry ML (1980) The role of opioid peptides in memory and learning. Behav Brain Res 1(6): 451–468PubMedCrossRefGoogle Scholar
  124. 124.
    Izquierdo I, Dias RD (1981) Retrograde amnesia caused by Met-, Leu-and des-Try-Metenkephalin in the rat and its reversal by naloxone. Neurosci Lett 22(2): 189–193PubMedCrossRefGoogle Scholar
  125. 125.
    Colombo PJ, Thompson KR, Martinez JL Jr, Bennett EL, Rosenzweig MR (1993) Dynorphin(1–13) impairs memory formation for aversive and appetitive learning in chicks. Peptides 14(6): 1165–1170PubMedCrossRefGoogle Scholar
  126. 126.
    Colombo PJ, Martinez JL Jr, Bennett EL, Rosenzweig MR (1992) Kappa opioid receptor activity modulates memory for peck-avoidance training in the 2-day-old chick. Psychopharmacology (Berl) 108(1–2): 235–240CrossRefGoogle Scholar
  127. 127.
    Sandin J, Nylander I, Georgieva J, Schott PA, Ogren SO, Terenius L (1998) Hippocampal dynorphin B injections impair spatial learning in rats: a kappa-opioid receptor-mediated effect. Neuroscience 85(2): 375–382PubMedCrossRefGoogle Scholar
  128. 128.
    Jiang HK, Owyang VV, Hong JS, Gallagher M (1989) Elevated dynorphin in the hippocampal formation of aged rats: Relation to cognitive impairment on a spatial learning task. Proc Nati Acad Sci USA 86(8): 2948–2951CrossRefGoogle Scholar
  129. 129.
    Farr SA, Banks WA, Morley JE (2000) Estradiol potentiates acetylcholine and glutamate-mediated post-trial memory processing in the hippocampus. Brain Res 864(2): 263–269PubMedCrossRefGoogle Scholar
  130. 130.
    Gibbs RB (1999) Estrogen replacement enhances acquisition of a spatial memory task and reduces deficits associated with hippocampal muscarinic receptor inhibition. Horm Behav 36(3): 222–233PubMedCrossRefGoogle Scholar
  131. 131.
    Heikkinen T, Puolivali J, Liu L, Rissanen A, Tanila H (2002) Effects of ovariectomy and estrogen treatment on learning and hippocampal neurotransmitters in mice. Horm Behav 41(1): 22–32PubMedCrossRefGoogle Scholar
  132. 132.
    Daniel JM, Dohanich GP (2001) Acetylcholine mediates the estrogen-induced increase in NMDA receptor binding in CA 1 of the hippocampus and the associated improvement in working memory. J Neurosci 21(17): 6949–6956PubMedGoogle Scholar
  133. 133.
    Fugger HN, Foster TC, Gustafsson J, Rissman EF (2000) Novel effects of estradiol and estrogen receptor alpha and beta on cognitive function. Brain Res 883(2): 258–264PubMedCrossRefGoogle Scholar
  134. 134.
    Rissman EF, Heck AL, Leonard JE, Shupnik MA, Gustafsson JA (2002) Disruption of estrogen receptor beta gene impairs spatial learning in female mice. Proc Nati Acad Sci USA 99(6): 3996–4001CrossRefGoogle Scholar
  135. 135.
    Woolley CS, Gould E, Frankfurt M, McEwen BS (1990) Naturally occurring fluctuation in dendritic spine density on adult hippocampal pyramidal neurons. J Neurosci 10(12): 4035–4039PubMedGoogle Scholar
  136. 136.
    McEwen B (2002) Estrogen actions throughout the brain. Recent Progress in Hormone Research 57: 357–384CrossRefGoogle Scholar
  137. 137.
    Horvath KM, Hartig W, Van der Veen R, Keijser JN, Mulder J, Ziegert M, Van der Zee EA, Harkany T, Luiten PG (2002) 17beta-estradiol enhances cortical cholinergic innervation and preserves synaptic density following excitotoxic lesions to the rat nucleus basalis magnocellularis. Neuroscience 110(3): 489–504PubMedCrossRefGoogle Scholar
  138. 138.
    Frick KM, Fernandez SM, Bulinski SC (2002) Estrogen replacement improves spatial reference memory and increases hippocampal synaptophysin in aged female mice. Neuroscience 115(2): 547–558PubMedCrossRefGoogle Scholar
  139. 139.
    Resnick SM, Maki PM (2001) Effects of hormone replacement therapy on cognitive and brain aging. Ann N Y Acad Sci 949: 203–214PubMedCrossRefGoogle Scholar
  140. 140.
    Zec RF, Trivedi MA (2002) The effects of estrogen replacement therapy on neuropsychological functioning in post-menopausal women with and without dementia: A critical and theoretical review. Neuropsychol Rev 12(2): 65–109PubMedCrossRefGoogle Scholar
  141. 141.
    Baulieu EE, Robel P, Schumacher M (2001) Neurosteroids: Beginning of the story. Int Rev Neurobiol 46: 1–32PubMedCrossRefGoogle Scholar
  142. 142.
    Paul SM, Purdy RH (1992) Neuroactive steroids. FASEB J 6: 2311–2311PubMedGoogle Scholar
  143. 143.
    Bergeron R, de Montigny C, Debonnel G (1996) Potentiation of neuronal NMDA response induced by dehydroepiandrosterone and its suppression by progesterone: Effects mediated via sigma receptors. J Neurosci 16(3): 1193–1202PubMedGoogle Scholar
  144. 144.
    Maurice T, Junien JL, Privat A (1997) Dehydroepiandrosterone sulfate attenuates dizocilpineinduced learning impairment in mice via sigma 1-receptors. Behav Brain Res 83(1–2): 159–164PubMedCrossRefGoogle Scholar
  145. 145.
    Darnaudery M, Koehl M, Piazza PV, Le Moal M, Mayo W (2000) Pregnenolone sulfate increases hippocampal acetylcholine release and spatial recognition. Brain Res 852(1): 173–179PubMedCrossRefGoogle Scholar
  146. 146.
    Pallares M, Darnaudery M, Day J, Le Moal M, Mayo W (1998) The neurosteroid pregnenolone sulfate infused into the nucleus basalis increases both acetylcholine release in the frontal cortex or amygdala and spatial memory. Neuroscience 87(3): 551–558PubMedCrossRefGoogle Scholar
  147. 147.
    Akwa Y, Ladurelle N, Covey DF, Baulieu EE (2001) The synthetic enantiomer of pregnenolone sulfate is very active on memory in rats and mice, even more so than its physiological neurosteroid counterpart: distinct mechanisms? Proc Nati Acad Sci USA 98(24): 14033–14037CrossRefGoogle Scholar
  148. 148.
    Mathis C, Vogel E, Cagniard B, Criscuolo F, Ungerer A (1996) The neurosteroid pregnenolone sulfate blocks deficits induced by a competitive NMDA antagonist in active avoidance and lever-press learning tasks in mice. Neuropharmacology 35(8): 1057–1064PubMedCrossRefGoogle Scholar
  149. 149.
    Meziane H, Mathis C, Paul SM, Ungerer A (1996) The neurosteroid pregnenolone sulfate reduces learning deficits induced by scopolamine and has promnestic effects in mice performing an appetitive learning task. Psychopharmacology 126(4): 323–330PubMedCrossRefGoogle Scholar
  150. 150.
    Reddy DS, Kulkarni SK (1998) The effects of neurosteroids on acquisition and retention of a modified passive-avoidance learning task in mice. Brain Res 791(1–2): 108–116PubMedCrossRefGoogle Scholar
  151. 151.
    Vallee M, Mayo W, Darnaudery M, Corpechot C, Young J, Koehl M, Le Moal M, Baulieu EE, Robel P, Simon H (1997) Neurosteroids: Deficient cognitive performance in aged rats depends on low pregnenolone sulfate levels in the hippocampus. Proc Natl Acad Sci USA 94(26): 14865–14870PubMedCrossRefGoogle Scholar
  152. 152.
    Mayo W, Le Moal M, Abrous DN (2001) Pregnenolone sulfate and aging of cognitive functions: behavioral, neurochemical, and morphological investigations. Horm Behav 40(2): 215–217PubMedCrossRefGoogle Scholar
  153. 153.
    Vallee M, Mayo W, Koob GF, Le Moal M (2001) Neurosteroids in learning and memory processes. Int Rev Neurobiol 46: 273–320PubMedCrossRefGoogle Scholar
  154. 154.
    Bowlby MR (1993) Pregnenolone sulfate potentiation of N-methyl-D-aspartate receptor channels in hippocampal neurons. Mol Pharmacol 43: 813–819PubMedGoogle Scholar
  155. 155.
    Majewska MD, Bluet, Pajot M. T, Robel P, Baulieu EE (1989) Pregnenolone sulfate antagonizes barbituate-induced hypnosis. Pharmacol Biochem Behav 33(701): 701–703PubMedCrossRefGoogle Scholar
  156. 156.
    Nilsson KR, Zorumski CF, Covey DF (1998) Neurosteroid analogues. 6. The synthesis and GABAA receptor pharmacology of enantiomers of dehydroepiandrosterone sulfate, pregnenolone sulfate, and (3alpha,5beta)-3-hydroxypregnan-20-one sulfate. J Med Chem 41(14): 2604–2613PubMedCrossRefGoogle Scholar
  157. 157.
    Martignoni E, Costa A, Sinforiani E, Liuzzi A, Chiodini P, Mauri M, Bono G, Nappi G (1992) The brain as a target for adrenocortical steroids: Cognitive implications. Psychoneuoroendocrinol 17: 343–354CrossRefGoogle Scholar
  158. 158.
    de Kloet ER, Grootendorst J, Karssen AM, Oitzl MS (2002) Gene x environment interaction and cognitive performance: animal studies on the role of corticosterone. Neurobiol Learn Mem 78(3): 570–577PubMedCrossRefGoogle Scholar
  159. 159.
    Sapolsky RM (1993) Potential behavioral modification of glucocorticoid damage to the hippocampus. Behav Brain Res 57: 175–182PubMedCrossRefGoogle Scholar
  160. 160.
    Oitzl MS, de Kloet ER (1992) Selective corticosteroid antagonists modulate specific aspects of spatial orientation learning. Behav Neurosci 106(1): 62–71PubMedCrossRefGoogle Scholar
  161. 161.
    Sandi C, Rose SPR (1994) Corticosterone enhances long-term retention in one-day-old chicks trained in a weak passive avoidance learning paradigm. Brain Res 647: 106–112PubMedCrossRefGoogle Scholar
  162. 162.
    de Quervain DJ, Roozendaal B, McGaugh JL (1998) Stress and glucocorticoids impair retrieval of long-term spatial memory. Nature 394: 787–790PubMedCrossRefGoogle Scholar
  163. 163.
    McGaugh JL, Roozendaal B (2002) Role of adrenal stress hormones in forming lasting memories in the brain. Curr Opin Neurobiol 12(2): 205–210CrossRefGoogle Scholar
  164. 164.
    Buchanan TW, Lovallo WR (2001) Enhanced memory for emotional material following stress-level cortisol treatment in humans. Psychoneuroendocrinology 26(3): 307–317PubMedCrossRefGoogle Scholar
  165. 165.
    Porter NM, Landfield PW (1998) Stress hormones and brain aging: Adding injury to insult. Nature Neuroscience 1(1): 3–4PubMedCrossRefGoogle Scholar
  166. 166.
    McEwen BS (1997) Possible mechanisms for atrophy of the human hippocampus. Molecular Psychiatry 2: 255–262CrossRefGoogle Scholar
  167. 167.
    Heinrichs SC, Joppa M (2001) Dissociation of arousal-like from anxiogenic-like actions of brain corticotropin-releasing factor receptor ligands in rats. Behav Brain Res 122: 43–50PubMedCrossRefGoogle Scholar
  168. 168.
    Heinrichs SC, Vale EA, Lapsansky J, Behan DP, McClure LV, Ling N, De Souza EB, Schulteis G (1997) Enhancement of performance in multiple learning tasks by corticotropin-releasing factor-binding protein ligand inhibitors. Peptides 18(5): 711–716PubMedCrossRefGoogle Scholar
  169. 169.
    Martinez JL Jr, Janak PH, Weinberger SB, Schulteis G, Derrick BE (1990) Enkephalin influences on behavioral and neural plasticity: Mechanisms of action. NIDA Res Monogr 97: 48–78PubMedGoogle Scholar
  170. 170.
    Bliss TV, Collingridge GL (1993) A synaptic model of memory: Long-term potentiation in the hippocampus. Nature 361(6407): 31–39PubMedCrossRefGoogle Scholar
  171. 171.
    Gibbs DM (1984) Dissociation of oxytocin, vasopressin and corticotropin secretion during different types of stress. Life Sci 35(5): 487–491PubMedCrossRefGoogle Scholar
  172. 172.
    Buijs RM (1983) Vasopressin and oxytocin—their role in neurotransmission. Pharmacol Ther 22(1): 127–141PubMedCrossRefGoogle Scholar
  173. 173.
    Buijs RM, De Vries GJ, Van Leeuwen FW, Swaab DF (1983) Vasopressin and oxytocin: Distribution and putative functions in the brain. Prog Brain Res 60: 115–122PubMedCrossRefGoogle Scholar
  174. 174.
    Chepkova AN, Kapai NA, Skrebitskii VG (2001) Arginine vasopressin fragment AVP(4–9) facilitates induction of long-term potentiation in the hippocampus. Bull Exp Biol Med 131(2): 136–138PubMedCrossRefGoogle Scholar
  175. 175.
    Dubrovsky B, Tatarinov A, Gijsbers K, Harris J, Tsiodras A (2003) Effects of arginine-vasopressin (AVP) on long-term potentiation in intact anesthetized rats. Brain Res Bull 59(6): 467–472PubMedCrossRefGoogle Scholar
  176. 176.
    Chen C, Diaz Brinton RD, Shors TJ, Thompson RF (1993) Vasopressin induction of long-lasting potentiation of synaptic transmission in the dentate gyrus. Hippocampus 3(2): 193–203PubMedCrossRefGoogle Scholar
  177. 177.
    Kinsley CH, Madonia L, Gifford GW, Tureski K, Griffin GR, Lowry C, Williams J, Collins J, McLearie H, Lambert KG (1999) Motherhood improves learning and memory. Nature 402(6758): 137–138PubMedCrossRefGoogle Scholar
  178. 178.
    Tomizawa K, Iga N, Lu YE, Moriwaki A, Matsushita M, Li ST, Miyamoto O, Itano T, Matsui H (2003) Oxytocin improves long-lasting spatial memory during motherhood through MAP kinase cascade. Nat Neurosci 6(4): 384–390PubMedCrossRefGoogle Scholar
  179. 179.
    Korte M, Carroll P, Wolf E, Brem G, Thoenen H, Bonhoeffer T (1995) Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc Nati Acad Sci USA 92(19): 8856–8860CrossRefGoogle Scholar
  180. 180.
    Patterson SL, Abel T, Deuel TA, Martin KC, Rose JC, Kandel ER (1996) Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron 16(6): 1137–1145PubMedCrossRefGoogle Scholar
  181. 181.
    Gooney M, Shaw K, Kelly A, O’Mara SM, Lynch MA (2002) Long-term potentiation and spatial learning are associated with increased phosphorylation of TrkB and extracellular signal-regulated kinase (ERK) in the dentate gyrus: Evidence for a role for brain-derived neurotrophic factor. Behav Neurosci 116(3): 455–463PubMedCrossRefGoogle Scholar
  182. 182.
    Messaoudi E, Ying SW, Kanhema T, Croll SD, Bramham CR (2002) Brain-derived neurotrophic factor triggers transcription-dependent, late phase long-term potentiation in vivo. J Neurosci 22(17): 7453–7461PubMedGoogle Scholar
  183. 183.
    Kovalchuk Y, Hanse E, Kafitz KW, Konnerth A (2002) Postsynaptic Induction of BDNFMediated Long-Term Potentiation. Science 295(5560): 1729–1734PubMedCrossRefGoogle Scholar
  184. 184.
    Mizuno M, Yamada K, He J, Nakajima A, Nabeshima T (2003) Involvement of BDNF receptor TrkB in spatial memory formation. Learn Mem 10(2): 108–115PubMedCrossRefGoogle Scholar
  185. 185.
    Buwalda B, de Boer SF, Van Kalkeren AA, Koolhaas JM (1997) Physiological and behavioral effects of chronic intracerebroventricular infusion of corticotropin-releasing factor in the rat. Psychoneuroendocrinology 22(5): 297–309PubMedCrossRefGoogle Scholar
  186. 186.
    Heinrichs SC, Menzaghi F, Schulteis G, Koob GF, Stinus L (1995) Suppression of corticotropinreleasing factor in the amygdala attenuates aversive consequences of morphine withdrawal. Behav Pharmacol 6(1): 74–80PubMedCrossRefGoogle Scholar
  187. 187.
    Heinrichs SC, Menzaghi F, Merlo Pich E, Britton KT, Koob GF (1995) The role of CRF in behavioral aspects of stress. Ann N Y Acad Sci 771: 92–104PubMedCrossRefGoogle Scholar
  188. 188.
    Wang HL, Tsai LY, Lee EH (2000) Corticotropin-releasing factor produces a protein synthesis—dependent long-lasting potentiation in dentate gyms neurons. J Neurophysiol 83(1): 343–349PubMedGoogle Scholar
  189. 189.
    Wang HL, Wayner MJ, Chai CY, Lee EH (1998) Corticotrophin-releasing factor produces a long-lasting enhancement of synaptic efficacy in the hippocampus. Eur J Neurosci 10(11): 3428–3437PubMedCrossRefGoogle Scholar
  190. 190.
    Rebaudo R, Melani R, Balestrino M, Izvarina N (2001) Electrophysiological effects of sustained delivery of CRF and its receptor agonists in hippocampal slices. Brain Res 922(1): 112–117PubMedCrossRefGoogle Scholar
  191. 191.
    Blank T, Nijholt I, Eckart K, Spiess J (2002) Priming of long-term potentiation in mouse hippocampus by corticotropin-releasing factor and acute stress: Implications for hippocampusdependent learning. J Neurosci 22(9): 3788–3794PubMedGoogle Scholar
  192. 192.
    Kramar EA, Armstrong DL, Ikeda S, Wayner MJ, Harding JW, Wright JW (2001) The effects of angiotensin IV analogs on long-term potentiation within the CA1 region of the hippocampus in vitro. Brain Res 897(1–2): 114–121PubMedCrossRefGoogle Scholar
  193. 193.
    Wayner MJ, Armstrong DL, Phelix CF, Wright JW, Harding JW (2001) Angiotensin IV enhances LTP in rat dentate gyrus in vivo. Peptides 22(9): 1403–1414CrossRefGoogle Scholar
  194. 194.
    Qian Z, Gilbert ME, Colicos MA, Kandel ER, Kuhl D (1993) Tissue-plasminogen activator is induced as an immediate-early gene during seizure, kindling and long-term potentiation. Nature 361(6411): 453–457PubMedCrossRefGoogle Scholar
  195. 195.
    Carmeliet P, Schoonjans L, Kieckens L, Ream B, Degen J, Bronson R, De Vos R, van den Oord JJ, Caen D, Mulligan RC (1994) Physiological consequences of loss of plasminogen activator gene function in mice. Nature 368(6470): 419–424PubMedCrossRefGoogle Scholar
  196. 196.
    Madani R, Hulo S, Toni N, Madani H, Steimer T, Muller D, Vassalli JD (1999) Enhanced hippocampal long-term potentiation and learning by increased neuronal expression of tissue-type plasminogen activator in transgenic mice. Embo J 18(11): 3007–3012PubMedCrossRefGoogle Scholar
  197. 197.
    Chen ZL, Strickland S (1997) Neuronal death in the hippocampus is promoted by plasmin-catalyzed degradation of laminin. Cell 91(7): 917–925PubMedCrossRefGoogle Scholar
  198. 198.
    Zhuo M, Holtzman DM, Li Y, Osaka H, DeMaro J, Jacquin M, Bu G (2000) Role of tissue plasminogen activator receptor LRP in hippocampal long-term potentiation. J Neurosci 20(2): 542–549PubMedGoogle Scholar
  199. 199.
    Wright JW, Kramar EA, Meighan SE, Harding JW (2002) Extracellular matrix molecules, longterm potentiation, memory consolidation and the brain angiotensin system. Peptides 23(1): 221–246PubMedCrossRefGoogle Scholar
  200. 200.
    Matsumoto A, Arai Y (1977) Precocious puberty and synaptogenesis in the hypothalamic arcuate nucleus in pregnant mare serum gonadotropin (PMSG) treated immature female rats. Brain Res 129(2): 375–378PubMedCrossRefGoogle Scholar
  201. 201.
    Cordoba Montoya DA, Caner HF (1997) Estrogen facilitates induction of long-term potentiation in the hippocampus of awake rats. Brain Res 778(2): 430–438PubMedCrossRefGoogle Scholar
  202. 202.
    Good M, Day M, Muir JL (1999) Cyclical changes in endogenous levels of oestrogen modulate the induction of LTD and LTP in the hippocampal CAI region. Eur J Neurosci 11(12): 4476–4480PubMedCrossRefGoogle Scholar
  203. 203.
    Singh M, Meyer EM, Millard WJ, Simpkins JW (1994) Ovarian steroid deprivation results in a reversible learning impairment and compromised cholinergic function in female Sprague-Dawley rats. Brain Res 644(2): 305–312PubMedCrossRefGoogle Scholar
  204. 204.
    O’Neal MF, Means LW, Poole MC, Hamm RJ (1996) Estrogen affects performance of ovariectomized rats in a two-choice water-escape working memory task. Psychoneuroendocrinology 21(1): 51–65PubMedCrossRefGoogle Scholar
  205. 205.
    Kim JS, Kim HY, Kim JH, Shin HK, Lee SH, Lee YS, Son H (2002) Enhancement of rat hippocampal long-term potentiation by 17 beta-estradiol involves mitogen-activated protein kinasedependent and -independent components. Neurosci Lett 332(1): 65–69PubMedCrossRefGoogle Scholar
  206. 206.
    Gureviciene I, Puolivali J, Pussinen R, Wang J, Tanila H, Ylinen A (2003) Estrogen treatment alleviates NMDA-antagonist induced hippocampal LTP blockade and cognitive deficits in ovariectomized mice. Neurobiol Learn Mem 79(1): 72–80PubMedCrossRefGoogle Scholar
  207. 207.
    Lisman J (1989) A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proc Natl Acad Sci USA 86(23): 9574–9578PubMedCrossRefGoogle Scholar
  208. 208.
    Grant SG, O’Dell TJ, Karl KA, Stein PL, Soriano P, Kandel ER (1992) Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science 258(5090): 1903–1910PubMedCrossRefGoogle Scholar
  209. 209.
    O’Meara G, Coumis U, Ma SY, Kehr J, Mahoney S, Bacon A, Allen SJ, Holmes F, Kahl U, Wang FH et al. (2000) Galanin regulates the postnatal survival of a subset of basal forebrain cholinergic neurons. Proc Natl Acad Sci USA 97(21): 11569–11574PubMedCrossRefGoogle Scholar
  210. 210.
    Crawley IN, Mufson EJ, Hohmann JG, Teklemichael D, Steiner RA, Holmberg K, Xu ZQ, Blakeman KH, Xu XJ, Wiesenfeld-Hallin Z et al. (2002) Galanin over-expressing transgenic mice. Neuropeptides 36(2–3): 145–156PubMedCrossRefGoogle Scholar
  211. 211.
    Harris EW, Cotman CW (1986) Long-term potentiation of guinea pig mossy fiber responses is not blocked by N-methyl D-aspartate antagonists. Neurosci Lett 70(1): 132–137PubMedCrossRefGoogle Scholar
  212. 212.
    Derrick BE, Martinez JL Jr (1994) Frequency-dependent associative long-term potentiation at the hippocampal mossy fiber-CA3 synapse. Proc Natl Acad Sci USA 91(22): 10290–10294PubMedCrossRefGoogle Scholar
  213. 213.
    Derrick BE, Martinez JL Jr (1994) Opioid receptor activation is one factor underlying the frequency dependence of mossy fiber LTP induction. J Neurosci 14(7): 4359–4367PubMedGoogle Scholar
  214. 214.
    Derrick BE, Martinez JL Jr (1996) Associative, bidirectional modifications at the hippocampal mossy fibre-CA3 synapse. Nature 381(6581): 429–434PubMedCrossRefGoogle Scholar
  215. 215.
    Derrick BE, Rodriguez SB, Lieberman DN, Martinez JL Jr (1992) Mu opioid receptors are associated with the induction of hippocampal mossy fiber long-term potentiation. J Pharmacol Exp Ther 263(2): 725–733PubMedGoogle Scholar
  216. 216.
    Derrick BE, Weinberger SB, Martinez JL Jr (1991) Opioid receptors are involved in an NMDA receptor-independent mechanism of LTP induction at hippocampal mossy fiber-CA3 synapses. Brain Res Bull 27(2): 219–223PubMedCrossRefGoogle Scholar
  217. 217.
    Do VH, Martinez CO, Martinez JL Jr, Derrick BE (2002) Long-term potentiation in direct perforant path projections to the hippocampal CA3 region in vivo. J Neurophysiol 87(2): 669–678PubMedGoogle Scholar
  218. 218.
    Jin W, Chavkin C (1999) Mu opioids enhance mossy fiber synaptic transmission indirectly by reducing GABAB receptor activation. Brain Res 821(2): 286–293PubMedCrossRefGoogle Scholar
  219. 219.
    Ying SW, Futter M, Rosenblum K, Webber MJ, Hunt SP, Bliss TV, Bramham CR (2002) Brain-derived neurotrophic factor induces long-term potentiation in intact adult hippocampus: Requirement for ERK activation coupled to CREB and upregulation of Arc synthesis. J Neurosci 22(5): 1532–1540PubMedGoogle Scholar
  220. 220.
    Weisskopf MG, Zalutsky RA, Nicoll RA (1993) The opioid peptide dynorphin mediates heterosynaptic depression of hippocampal mossy fibre synapses and modulates long-term potentiation. Nature 362(6419): 423–427PubMedCrossRefGoogle Scholar
  221. 221.
    Barea-Rodriguez EJ, Rivera DT, Jaffe DB, Martinez JL Jr (2000) Protein synthesis inhibition blocks the induction of mossy fiber long-term potentiation in vivo. J Neurosci 20(22): 8528–8532PubMedGoogle Scholar
  222. 222.
    Thompson KJ, Orfila JE, Archanta P, Martinez JJ (2003) submitted to Cell and Molecular Biology Google Scholar
  223. 223.
    Roberts LA, Large CH, O’ Shaughnessy CT, Morris BJ (1997) Long-term potentiation in perforant path/granule cell synapses is associated with a post-synaptic induction of proenkephalin gene expression. Neurosci Lett 227(3): 205–208PubMedCrossRefGoogle Scholar
  224. 224.
    Whittaker E, Vereker E, Lynch MA (1999) Neuropeptide Y inhibits glutamate release and longterm potentiation in rat dentate gyrus. Brain Res 827(1–2): 229–233PubMedCrossRefGoogle Scholar
  225. 225.
    Sarter M (1991) Taking stock of cognition enhancers. Trends Pharmacol Sci 12(12): 456–461PubMedCrossRefGoogle Scholar
  226. 226.
    Korol DL (2002) Enhancing cognitive function across the life-span. Ann N Y Acad Sci 959: 167–179PubMedCrossRefGoogle Scholar
  227. 227.
    Benton D (1990) The impact of increasing blood glucose on psychological functioning. Biol Psychol 30(1): 13–19Google Scholar
  228. 228.
    Pollitt E, Lewis NL, Garza C, Shulman RJ (1982) Fasting and cognitive function. J Psychiatr Res 17(2): 169–174PubMedCrossRefGoogle Scholar
  229. 229.
    Gold PE, Stone WS (1988) Neuroendocrine effects on memory in aged rodents and humans. Neurobiol Aging 9(5–6): 709–717PubMedCrossRefGoogle Scholar
  230. 230.
    Wenk GL (1989) An hypothesis on the role of glucose in the mechanism of action of cognitive enhancers. Psychopharmacology (Berl) 99(4): 431–438CrossRefGoogle Scholar
  231. 231.
    Lombardi WJ, Weingartner H (1995) Pharmacoloigcal treatment of impaired memory function. In: AD Baddeley, BA Wilson, FN Watts (eds): Handbook of Memory Disorders. Wiley, New York, 577–601Google Scholar
  232. 232.
    Olton DS, Wenk L (1990) The development of behavioral tests to assess the effects of cognitive enhancers. Pharmacopsychiatry 23 Suppl 2: 65–69PubMedCrossRefGoogle Scholar
  233. 233.
    Cardinal RN, Parkinson JA, Hall J, Everitt BJ (2002) Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev 26(3): 321–352PubMedCrossRefGoogle Scholar
  234. 234.
    Ochsner KN (2000) Are affective events richly recollected or simply familiar? The experience and process of recognizing feelings past. J Exp Psychol Gen 129(2): 242–261PubMedCrossRefGoogle Scholar
  235. 235.
    Gold LH (1999) Hierarchical strategy for phenotypic analysis in mice. Psychopharmacology 147: 2–4PubMedCrossRefGoogle Scholar
  236. 236.
    Crawley JN, Paylor R (1997) A proposed test battery and constellations of specific behavior paradigms to investigate the behavioral phenotypes of transgenic and knockout mice. Hormones and Behavior 31: 197–211PubMedCrossRefGoogle Scholar
  237. 237.
    Sarter M, Bruno JP, Givens B, Moore H, McGaughy J, McMahon K (1996) Neuronal mechanisms mediating drug-induced cognition enhancement: cognitive activity as a necessary intervening variable. Brain Res Cogn Brain Res 3(3–4): 329–343PubMedCrossRefGoogle Scholar
  238. 238.
    Roozendaal B, Brunson KL, Holloway BL, McGaugh JL, Baram TZ (2002) Involvement of stress-released corticotropin-releasing hormone in the basolateral amygdala in regulating memory consolidation. Proc Natl Acad Sci USA 99(21): 13908–13913PubMedCrossRefGoogle Scholar
  239. 239.
    Behan DP, Heinrichs SC, Troncoso JC, Liu X-J, Kawas CH, Ling N, De Souza EB (1995) Displacement of corticotropin releasing factor from its binding protein as a possible treatment for Alzheimer’s disease. Nature 378: 284–287PubMedCrossRefGoogle Scholar
  240. 240.
    Radulovic J, Fischer A, Katerkamp U, Spiess J (2000) Role of regional neurotransmitter receptors in corticotropin-releasing factor (CRF)-mediated modulation of fear conditioning. Neuropharmacology. 39(4): 707–710PubMedCrossRefGoogle Scholar
  241. 241.
    Bernardi F, Lanzone A, Cento RM, Spada RS, Pezzani I, Genazzani AD, Luisi S, Luisi M, Petraglia F, Genazzani AR (2000) Allopregnanolone and dehydroepiandrosterone response to corticotropin-releasing factor in patients suffering from Alzheimer’s disease and vascular dementia. European J Endocrinology 142(5): 466–471CrossRefGoogle Scholar
  242. 242.
    Behan DP, Grigoriadis DE, Lovenberg T, Chalmers D, Heinrichs S, Liaw C, De Souza EB (1996) Neurobiology of corticotropin releasing factor (CRF) receptors and CRF-binding protein: Implications for the treatment of CNS disorders. Molecular Psychiatry 1: 265–277PubMedGoogle Scholar
  243. 243.
    Thornton PL, Ingram RL, Sonntag WE (2000) Chronic [D-Ala2]-growth hormone-releasing hormone administration attenuates age-related deficits in spatial memory. J Gerontol A Biol Sci Med Sci 55(2): B106–112PubMedCrossRefGoogle Scholar
  244. 244.
    Shanley LI, Irving AJ, Harvey J (2001) Leptin enhances NMDA receptor function and modulates hippocampal synaptic plasticity. J Neurosci 21(24): RC186PubMedGoogle Scholar
  245. 245.
    Li XL, Aou S, Oomura Y, Hon N, Fukunaga K, Hon T (2002) Impairment of long-term potentiation and spatial memory in leptin receptor-deficient rodents. Neuroscience 113(3): 607–615PubMedCrossRefGoogle Scholar
  246. 246.
    Hiramatsu M, Inoue K (2000) Improvement by low doses of nociceptin on scopolamine-induced impairment of learning and/or memory. European J Pharmacology 395(2): 149–156CrossRefGoogle Scholar
  247. 247.
    Telegdy G, Adamik A (2002) The action of orexin A on passive avoidance learning. Involvement of transmitters. Regulatory Peptides 104(1–3): 105–110PubMedCrossRefGoogle Scholar
  248. 248.
    Jaeger LB, Farr SA, Banks WA, Morley JE (2002) Effects of orexin-A on memory processing. Peptides 23(9): 1683–1688PubMedCrossRefGoogle Scholar
  249. 249.
    Lenard L, Kertes E (2002) Influence of passive avoidance learning by substance P in the basolateral amygdala. Acta Biol Hung 53(1–2): 95–104PubMedCrossRefGoogle Scholar
  250. 250.
    Hasenohrl RU, Souza-Silva MA, Nikolaus S, Tomaz C, Brandao ML, Schwarting RK, Huston JP (2000) Substance P and its role in neural mechanisms governing learning, anxiety and functional recovery. Neuropeptides 34(5): 272–280PubMedCrossRefGoogle Scholar
  251. 251.
    Markowska AL, Mooney M, Sonntag WE (1998) Insulin-like growth factor-1 ameliorates age-related behavioral deficits. Neuroscience 87(3): 559–569PubMedCrossRefGoogle Scholar
  252. 252.
    Wu HC, Chen KY, Lee WY, Lee EHY (1997) Antisense oligonucleotides to corticotropin-releasing factor impair memory retention and increase exploration in rats. Neuroscience 78(1): 147–153PubMedCrossRefGoogle Scholar
  253. 253.
    Weninger SC, Dunn AJ, Muglia LJ, Dikkes P, Miczek KA, Swiergiel AH, Berridge CW, Majzoub JA (1999) Stress-induced behaviors require the corticotropin-releasing hormone (CRH) receptor, but not CRH. Proc Natl Acad Sci USA 96(14): 8283–8288PubMedCrossRefGoogle Scholar
  254. 254.
    Heinrichs SC, Stenzel-Poore MP, Gold LH, Battenberg E, Bloom FE, Koob GF, Vale WW, Merlo Pich E (1996) Learning deficits in transgenic mice with central over-expression of corticotropinreleasing factor. Neuroscience 74(2): 303–311PubMedCrossRefGoogle Scholar
  255. 255.
    Liebsch G, Landgraf R, Engelmann M, Loerscher P, Holsboer F (1999) Differential behavioural effects of chronic infusion of CRH 1 and CRH 2 receptor antisensc oligonucleotides into the rat brain. J Psychiatric Research 33(2): 153–163CrossRefGoogle Scholar
  256. 256.
    Contarino A, Dellu F, Koob GF, Smith GW, Lee KF, Vale W, Gold LH (1999) Reduced anxiety-like and cognitive performance in mice lacking the corticotropin-releasing factor receptor 1. Brain Res 835(1): 1–9CrossRefGoogle Scholar
  257. 257.
    Pepin M-C, Pothier F, Barden N (1992) Impaired type II glucocorticoid-receptor function in mice bearing antisense RNA transgene. Nature 355: 725–728PubMedCrossRefGoogle Scholar
  258. 258.
    Oitzl MS, Reichardt HM, Joels M, de Kloet ER (2001) Point mutation in the mouse glucocorticoid receptor preventing DNA binding impairs spatial memory. Proc Natl Acad Sci USA 98(22): 12790–12795PubMedCrossRefGoogle Scholar
  259. 259.
    Vallee M, Shen W, Heinrichs SC, Zorumski CF, Covey DF, Koob GF, Purdy RH (2001) Steroid structure and pharmacological properties determine the anti-amnesic effects of pregnenolone sulphate in the passive avoidance task in rats. Eur J Neurosci 14(12): 2003–2010PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2004

Authors and Affiliations

  • Joe L. MartinezJr.
    • 1
  • Kenira Thompson
    • 1
  • Melanie P. McFadyen-Leussis
    • 2
  • Stephen C. Heinrichs
    • 2
  1. 1.Department of BiologyUniversity of Texas at San AntonioSan AntonioUSA
  2. 2.Department of PsychologyBoston CollegeChestnut HillUSA

Personalised recommendations