Skip to main content

Drugs that target muscarinic cholinergic receptors

  • Chapter
Cognitive Enhancing Drugs

Part of the book series: Milestones in Drug Therapy MDT ((MDT))

Abstract

Six groups of cholinergic neurons have been identified in the central nervous system (Ch1 –Ch6) [1]. Cholinergic neurons innervating the hippocampus and cerebral cortex arise from basal forebrain nuclei, including the medial septum (MS, Ch1 group), the vertical and horizontal limbs of the diagonal band (Ch2 and Ch3) and the nucleus basalis of Meynert (NBM, Ch4) [2]. Cholinergic neurons arising from the MS project mainly to the hippocampus, a brain region that plays an important role in learning and memory function. The diagonal band projections innervate the anterior cingulate cortex and the olfactory bulb, while the NBM projects to the amygdala and the cerebral cortex. The cholinergic projection from the NBM is widespread, covering the entire cortical mantle [3]. Basal forebrain cholinergic pathways have been implicated in attention, learning, memory and cognitive function. Moreover, the degeneration of basal forebrain cholinergic neurons is a consistent neurochemical hallmark of Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mesulam MM, Mufson EJ, Wainer BH, Levey AI (1983) Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Chl-Ch6). Neuroscience 10(4): 1185–1201

    Article  PubMed  CAS  Google Scholar 

  2. Kobayashi Y, Isa T (2002) Sensory-motor gating and cognitive control by the brainstem cholinergic system. Neural Netw 15(4–6): 731–741

    Article  PubMed  Google Scholar 

  3. Auld DS, Kornecook TJ, Bastianetto S, Quirion R (2002) Alzheimer’s disease and the basal forebrain cholinergic system: relations to beta-amyloid peptides, cognition, and treatment strategies. Prog Neurobiol 68(3): 209–245

    Article  PubMed  CAS  Google Scholar 

  4. Caulfield MP, Birdsall NJ (1998) International Union of Pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev 50(2): 279–290

    PubMed  CAS  Google Scholar 

  5. Bymaster FP, McKinzie DL, Felder CC, Wess J (2003) Use of M1—MS muscarinic receptor knockout mice as novel tools to delineate the physiological roles of the muscarinic cholinergic system. Neurochem Res 28(3–4): 437–442

    Article  PubMed  CAS  Google Scholar 

  6. Gomeza J, Zhang L, Kostenis E, Felder CC, Bymaster FP, Brodkin J, Shannon H, Xia B, Duttaroy A, Deng CX et a]. (2001) Generation and pharmacological analysis of M2 and M4 muscarinic receptor knockout mice. Life Sci 68(22–23): 2457–2466

    Article  PubMed  CAS  Google Scholar 

  7. Weiner DM, Levey AI, Brann MR (1990) Expression of muscarinic acetylcholine and dopamine receptor mRNAs in rat basal ganglia. Proc Natl Acad Sci USA 87(18): 7050–7054

    Article  PubMed  CAS  Google Scholar 

  8. Vilaro MT, Palacios JM, Mengod G (1990) Localization of m5 muscarinic receptor mRNA in rat brain examined by in situ hybridization histochemistry. Neurosci Lett 114(2): 154–159

    Article  PubMed  CAS  Google Scholar 

  9. Zhang W, Yamada M, Gomeza J, Basile AS, Wess J (2002) Multiple muscarinic acetylcholine receptor subtypes modulate striatal dopamine release, as studied with M1 —M5 muscarinic receptor knock-out mice. J Neurosci 22(15): 6347–6352

    PubMed  CAS  Google Scholar 

  10. Lucas-Meunier E, Fossier P, Baux G, Amar M (2003) Cholinergic modulation of the cortical neuronal network. Pflugers Arch 446(1): 17–29

    PubMed  CAS  Google Scholar 

  11. Levey AI (1996) Muscarinic acetylcholine receptor expression in memory circuits: implications for treatment of Alzheimer disease. Proc Natl Acad Sci USA 93(24): 13541–13546

    Article  PubMed  CAS  Google Scholar 

  12. Ma XH, Zhong P, Gu Z, Feng J, Yan Z (2003) Muscarinic potentiation of GABA(A) receptor currents is gated by insulin signaling in the prefrontal cortex. J Neurosci 23(4): 1159–1168

    PubMed  CAS  Google Scholar 

  13. Kimura F (2000) Cholinergic modulation of cortical function: A hypothetical role in shifting the dynamics in cortical network. Neurosci Res 38(1): 19–26

    Article  PubMed  CAS  Google Scholar 

  14. Hasselmo ME (1995) Neuromodulation and cortical function: modeling the physiological basis of behavior. Behav Brain Res 67(1): 1–27

    Article  PubMed  CAS  Google Scholar 

  15. Levey AI, Edmunds SM, Koliatsos V, Wiley RG, Heilman CJ (1995) Expression of ml—m4 muscarinic acetylcholine receptor proteins in rat hippocampus and regulation by cholinergic innervation. J Neurosci 15(5 Pt 2): 4077–4092

    PubMed  CAS  Google Scholar 

  16. Huerta PT, Lisman JE (1993) Heightened synaptic plasticity of hippocampal CAI neurons during a cholinergically induced rhythmic state. Nature 364(6439): 723–725

    Article  PubMed  CAS  Google Scholar 

  17. Walsh TJ, Tilson HA, DeHaven DL, Mailman RB, Fisher A, Hanin I (1984) AF64A, a cholinergic neurotoxin, selectively depletes acetylcholine in hippocampus and cortex, and produces longterm passive avoidance and radial-arm maze deficits in the rat. Brain Res 321(1): 91–102

    Article  PubMed  CAS  Google Scholar 

  18. Messer WS Jr, Stibbe JR, Bohnett M (1991) Involvement of the septohippocampal cholinergic system in representational memory. Brain Res 564(1): 66–72

    Article  PubMed  CAS  Google Scholar 

  19. Walsh TJ, Herzog CD, Gandhi C, Stackman RW, Wiley RG (1996) Injection of IgG 192-saporin into the medial septum produces cholinergic hypofunction and dose-dependent working memory deficits. Brain Res 726(1–2): 69–79

    Article  PubMed  CAS  Google Scholar 

  20. Walsh TJ, Kelly RM, Dougherty KD, Stackman RW, Wiley RG, Kutscher CL (1995) Behavioral and neurobiological alterations induced by the immunotoxin 192-IgG-saporin: cholinergic and non-cholinergic effects following i.c.0 injection. Brain Res 702(1–2): 233–245

    Article  PubMed  CAS  Google Scholar 

  21. Messer Jr WS, Abuh YF, Ryan K, Shepherd MA, Schroeder M, Abunada S, Sehgal R, El-Assadi AA (1997) Tetrahydropyrimidine derivatives display functional selectivity for MI muscarinic receptors in brain. Drug Dev Res 40: 171–184

    Article  CAS  Google Scholar 

  22. Messer WS Jr, Bachmann KA, Dockery C, El-Assadi AA, Hassoun E, Haupt N, Tang B, Li X (2002) Development of CDD-0102 as a selective M1 agonist for the treatment of Alzheimer’s disease. Drug Dev Res 57(4): 200–213

    Article  CAS  Google Scholar 

  23. Anagnostaras SG, Murphy GG, Hamilton SE, Mitchell SL, Rahnama NP, Nathanson NM, Silva AJ (2003) Selective cognitive dysfunction in acetylcholine MI muscarinic receptor mutant mice. Nat Neurosci 6(1): 51–58

    Article  PubMed  CAS  Google Scholar 

  24. Bartus RT, Dean RL 3rd, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217(4558): 408–414

    Article  PubMed  CAS  Google Scholar 

  25. Bartus RT (2000) On neurodegenerative diseases, models, and treatment strategies: Lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp Neurol 163(2): 495–529

    Article  PubMed  CAS  Google Scholar 

  26. DeKosky ST, Ikonomovic MD, Styren SD, Beckett L, Wisniewski S, Bennett DA, Cochran EJ, Kordower JH, Mufson EJ (2002) Up-regulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol 51(2): 145–155

    Article  Google Scholar 

  27. Moos WH, Davis RE, Schwarz RD, Gamzu ER (1988) Cognition activators. Med Res Rev 8(3): 353–391

    Article  PubMed  CAS  Google Scholar 

  28. Hollander E, Mohs RC, Davis KL (1986) Cholinergic approaches to the treatment of Alzheimer’s disease. Br Med Bull 42(1): 97–100

    PubMed  CAS  Google Scholar 

  29. Coyle JT, Price DL, DeLong MR (1983) Alzheimer’s disease: A disorder of cortical cholinergic innervation. Science 219(4589): 1184–1190

    Article  PubMed  CAS  Google Scholar 

  30. Bymaster FP, Carter PA, Peters SC, Zhang W, Ward JS, Mitch CH, Calligaro DO, Whitesitt CA, DeLapp N, Shannon HE et al. (1998) Xanomeline compared to other muscarinic agents on stimulation of phosphoinositide hydrolysis in vivo and other cholinomimetic effects. Brain Res 795(1–2):179–190

    Article  PubMed  CAS  Google Scholar 

  31. Eltze M (1994) Pathways involved in muscarinic M1 and M2 receptor stimulation in rabbit vas deferens. Eur J Pharmacol 263(1–2): 31–37

    Article  PubMed  CAS  Google Scholar 

  32. Nitsch RM, Slack BE, Wurtman RJ, Growdon JH (1992) Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science 258(5080): 304–307

    Article  PubMed  CAS  Google Scholar 

  33. Wolf BA, Wertkin AM, Jolly YC, Yasuda RP, Wolfe BB, Konrad RJ, Manning D, Ravi S, Williamson JR, Lee VM (1995) Muscarinic regulation of Alzheimer’s disease amyloid precursor protein secretion and amyloid beta-protein production in human neuronal NT2N cells. J Biol Chem 270(9): 4916–4922

    Article  PubMed  CAS  Google Scholar 

  34. Buxbaum JD, Ruefli AA, Parker CA, Cypess AM, Greengard P (1994) Calcium regulates processing of the Alzheimer amyloid protein precursor in a protein kinase C-independent manner. Proc Natl Acad Sci USA 91(10): 4489–4493

    Article  PubMed  CAS  Google Scholar 

  35. Murga C, Laguinge L, Wetzker R, Cuadrado A, Gutkind JS (1908) Activation of Akt/protein kinase B by G protein-coupled receptors. A role for alpha and beta gamma subunits of heterotrimeric G proteins acting through phosphatidylinositol-3-OH kinasegamma. J Biol Chem 273(30): 0–5, 1998

    Article  CAS  Google Scholar 

  36. Murga C, Fukuhara S, Gutkind JS (2069) A novel role for phosphatidylinositol 3-kinase beta in signaling from G protein-coupled receptors to Akt. J Biol Chem 275(16): 1–73, 2000

    Article  Google Scholar 

  37. Sadot E, Gurwitz D, Barg J, Behar L, Ginzburg I, Fisher A (1996) Activation of ml muscarinic acetylcholine receptor regulates tau phosphorylation in transfected PC12 cells. J Neurochem 66(2): 877–880

    Article  PubMed  CAS  Google Scholar 

  38. Hock C, Maddalena A, Heuser I, Naber D, Oertel W, von der Kammer H, Wienrich M, Deng M, Growdon JH, Nitsch RM (2000) Treatment with the selective muscarinic agonist talsaclidine decreases cerebrospinal fluid levels of Ab in patients with Alzheimer’s disease. In: Soc. Neurosci. abstr., New Orleans, LA„ pp 679.13. Soc. Neurosci

    Google Scholar 

  39. Nitsch RM, Deng M, Tennis M, Schoenfeld D, Growdon JH (2000) The selective muscarinic M1 agonist AF102B decreases levels of total A[beta] in cerebrospinal fluid of patients with Alzheimer’s disease. Ann Neurol 48: 913–918

    Article  PubMed  CAS  Google Scholar 

  40. Felder CC, Porter AC, Skillman TL, Zhang L, Bymaster FP, Nathanson NM, Hamilton SE, Gomeza J, Wess J, McKinzie DL (2001) Elucidating the role of muscarinic receptors in psychosis. Life Sci 68(22–23): 2605–2613

    Article  PubMed  CAS  Google Scholar 

  41. Bernardini N, Roza C, Sauer SK, Gomeza J, Wess J, Reeh PW (2002) Muscarinic M2 receptors on peripheral nerve endings: A molecular target of antinociception. J Neurosci 22(12): RC229

    PubMed  Google Scholar 

  42. Iadanza M, Holtje M, Ronsisvalle G, Holtje HD (2002) Kappa-opioid receptor model in a phospholipid bilayer: molecular dynamics simulation. J Med Chem 45(22): 4838–4846

    Article  PubMed  CAS  Google Scholar 

  43. Fisher A, Brandeis R, Karton I, Pittel Z, Gurwitz D, Haring R, Sapir M, Levy A, Heldman E (1991) (+—)-cis-2-methyl-spiro(1,3-oxathiolane-5,3’)quinuclidine, an MI selective cholinergic agonist, attenuates cognitive dysfunctions in an animal model of Alzheimer’s disease. J Pharmacol Exp Ther 257(1): 392–403

    PubMed  CAS  Google Scholar 

  44. O’Neill J, Fitten LJ, Siembieda D, Halgren E, Kim E, Fisher A, Perryman K (1998) Effects of AF102B and tacrine on delayed match-to-sample in monkeys. Prog Neuropsychopharmacol Biol Psychiatry22(4): 665–678

    Article  PubMed  Google Scholar 

  45. Fisher A, Brandeis R, Bar-Ner RH, Kliger-Spatz M, Natan N, Sonego H, Marcovitch I, Pittel Z (2002) AF150(S) and AF267B: MI muscarinic agonists as innovative therapies for Alzheimer’s disease. J Mol Neurosci 19(1–2): 145–153

    Article  PubMed  CAS  Google Scholar 

  46. Bartolomeo AC, Morris H, Buccafusco JJ, Kille N, Rosenzweig-Lipson S, Husbands MG, Sabb AL, Abou-Gharbia M, Moyer JA et al. (2000) The preclinical pharmacological profile of WAY-132983, a potent MI preferring agonist. J Pharmacol Exp Ther 292(2): 584–596

    PubMed  CAS  Google Scholar 

  47. Terry AV Jr, Buccafusco JJ, Borsini F, Leusch A (2002) Memory-related task performance by aged Rhesus monkeys administered the muscarinic M(1)-preferring agonist, talsaclidine. Psychopharmacology (Berl) 162(3): 292–300

    Article  CAS  Google Scholar 

  48. Shannon HE, Bymaster FP, Calligaro DO, Greenwood B, Mitch CH, Sawyer BD, Ward JS, Wong DT, Olesen PH, Sheardown MJ et al. (1994) Xanomeline: a novel muscarinic receptor agonist with functional selectivity for Ml receptors. J Pharmacol Exp Ther 269(1): 271–281

    PubMed  CAS  Google Scholar 

  49. Bodick NC, Offen WW, Levey AI, Cutler NR, Gauthier SG, Satlin A, Shannon HE, Tollefson GD, Rasmussen K, Bymaster FP et al. (1997) Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease. Arch Neurol 54(4): 465–473

    Article  PubMed  CAS  Google Scholar 

  50. Veroff AE, Bodick NC, Offen WW, Sramek JJ and Cutler NR (1998) Efficacy of xanomeline in Alzheimer disease: cognitive improvement measured using the Computerized Neuropsychological Test Battery (CNTB). Alzheimer Dis Assoc Disord 12(4): 304–312

    Article  PubMed  CAS  Google Scholar 

  51. Messer WS Jr, Abuh YF, Liu Y, Periyasamy S, Ngur DO, Edgar MA, El-Assadi AA, Sbeih S, Dunbar PG, Roknich S et al. (1997) Synthesis and biological characterization of 1,4,5,6- tetrahydropyrimidine and 2-amino-3,4,5,6-tetrahydropyridine derivatives as selective ml agonists. J Med Chem 40(8): 1230–1246

    Article  PubMed  CAS  Google Scholar 

  52. Christopoulos A, Grant MK, Ayoubzadeh N, Kim ON, Sauerberg P, Jeppesen L, El-Fakahany EE (2001) Synthesis and pharmacological evaluation of dimeric muscarinic acetylcholine receptor agonists. J Pharmacol Exp Ther 298(3): 1260–1268

    PubMed  CAS  Google Scholar 

  53. Rajeswaran WG, Cao Y, Huang XP, Wroblewski ME, Colclough T, Lee S, Liu F, Nagy PI, Ellis J, Levine BA et al. (2001) Design, Synthesis, and Biological Characterization of Bivalent 1-Methyl-1,2,5,6-tetrahydropyridy1–1,2,5-thiadiazole Derivatives as Selective Muscarinic Agonists. J Med Chem 44(26): 4563–4576

    Article  PubMed  CAS  Google Scholar 

  54. Spalding TA, Trotter C, Skjaerbaek N, Messier TL, Currier EA, Burstein ES, Li D, Hacksell U, Brann MR (2002) Discovery of an ectopic activation site on the M(1) muscarinic receptor. Mol Pharmacol 61(6): 1297–1302

    Article  PubMed  CAS  Google Scholar 

  55. Slutsky I, Wess J, Gomeza J, Dudel J, Parnas I, Parnas H (1954) Use of knockout mice reveals involvement of M2-muscarinic receptors in control of the kinetics of acetylcholine release. J Neurophysiol 89(4): —67, 2003

    Google Scholar 

  56. Lachowicz JE, Duffy RA, Ruperto V, Kozlowski J, Zhou G, Clader J, Billard W, Binch H 3rd, Crosby G, Cohen-Williams M et al. (2001) Facilitation of acetylcholine release and improvement in cognition by a selective M2 muscarinic antagonist, SCH 72788. Life Sci 68(22–23): 2585–2592

    Article  PubMed  CAS  Google Scholar 

  57. Vannucchi MG, Scali C, Kopf SR, Pepeu G, Casamenti F (1997) Selective muscarinic antagonists differentially affect in vivo acetylcholine release and memory performances of young and aged rats. Neuroscience 79(3): 837–846

    Article  PubMed  CAS  Google Scholar 

  58. Quirion R, Wilson A, Rowe W, Aubert I, Richard J, Doods H, Parent A, White N, Meaney MJ (1995) Facilitation of acetylcholine release and cognitive performance by an M(2)-muscarinic receptor antagonist in aged memory-impaired. J Neurosci 15(2): 1455–1462

    PubMed  CAS  Google Scholar 

  59. Tombaugh GC, Rowe WB, Chow AR, Michael TH, Rose GM (2002) Theta-frequency synaptic potentiation in CAl in vitro distinguishes cognitively impaired from unimpaired aged Fischer 344 rats. J Neurosci 22(22): 9932–9940

    PubMed  CAS  Google Scholar 

  60. Sarter MF, Bruno JP (1994) Cognitive functions of cortical ACh: Lessons from studies on trans-synaptic modulation of activated efflux. Trends Neurosci 17(6): 217–221

    Article  PubMed  CAS  Google Scholar 

  61. Sarter M, Bruno JP (1997) Cognitive functions of cortical acetylcholine: Toward a unifying hypothesis. Brain Res Brain Res Rev 23(1–2): 28–46

    Article  PubMed  CAS  Google Scholar 

  62. Stockton JM, Birdsall NJ, Burgen AS, Hulme EC (1983) Modification of the binding properties of muscarinic receptors by gallamine. Mol Pharmacol 23(3): 551–557

    PubMed  CAS  Google Scholar 

  63. Gharagozloo P, Lazareno S, Popham A, Birdsall NJ (1999) Allosteric interactions of quaternary strychnine and brucine derivatives with muscarinic acetylcholine receptors. J Med Chem 42(3): 438–445

    Article  PubMed  CAS  Google Scholar 

  64. Birdsall NJ, Farries T, Gharagozloo P, Kobayashi S, Lazareno S, Sugimoto M (1999) Subtype-selective positive cooperative interactions between brucine analogs and acetylcholine at muscarinic receptors: functional studies. Mol Pharmacol 55(4): 778–786

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this chapter

Cite this chapter

Messer, W.S. (2004). Drugs that target muscarinic cholinergic receptors. In: Buccafusco, J.J. (eds) Cognitive Enhancing Drugs. Milestones in Drug Therapy MDT. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7867-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7867-8_3

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9603-0

  • Online ISBN: 978-3-0348-7867-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics