Natural products as cognition enhancing agents

  • Keith A. Wesnes
  • Andrea Zangara
  • Andrew Scholey
  • David Kennedy
Part of the Milestones in Drug Therapy MDT book series (MDT)


Natural products have a widespread public appeal that appears only to be growing. The fastest growth is in the western world although in lesser economically developed countries the demand remains as strong as ever. This appeal is aided by the almost universal, though completely irrational assumption, that if a product is natural it must be safe. This chapter will consider those naturally-occurring substances that are believed to beneficially affect cognitive function.


Ursolic Acid Lipoic Acid Panax Ginseng Cognitive Enhancement American Ginseng 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yun TK (2001) Panax ginseng—a non-organ-specific cancer preventive? Lancet Oncology 2(1): 49–55PubMedCrossRefGoogle Scholar
  2. 2.
    Blumenthal M (2001) Herb sales down 15 percent in mainstream market. HerbalGram 51: 69Google Scholar
  3. 3.
    Kennedy DO, Scholey AB (2003) Ginseng: Potential in the enhancement of cognitive performance and mood. Pharmacol Biochem Behav 75: 687–700PubMedCrossRefGoogle Scholar
  4. 4.
    Tachikawa E, Kudo K, Harada K, Kashimoto T, Miyate Y, Kakizaki A, Takahashi E (1999) Effects of ginseng saponins on reponses induced by various receptor stimuli. European J Pharmacology 369: 23–32CrossRefGoogle Scholar
  5. 5.
    Liberti LE, Der Manderosian A (1978) Evaluation of commercial ginseng products. J Pharmaceutical Science 67 (10): 1487–1489CrossRefGoogle Scholar
  6. 6.
    Phillipson JD, Anderson LA (1984) Ginseng—quality safety and efficacy? Pharmaceut Journal 232: 161–165Google Scholar
  7. 7.
    Russo E (2001) Handbook of psychotropic herbs. A scientific analysis of herbal remedies for psychiatric conditions. Howarth Herbal Press, New YorkGoogle Scholar
  8. 8.
    Lee MO, Kim CY, Clifford DH (1981) Effect of ether, ethanol and aqueous extracts of ginseng on cardiovascular function in dogs. Canadian J Comparative Medicine 45(2): 182–187Google Scholar
  9. 9.
    Lei XL, Chiou GC (1986) Cardiovascular pharmacology of Panax notoginseng (Burk) F.H. Chen and Salvia miltiorrhiza. American J Chinese Medecine 14(3–4): 145–152CrossRefGoogle Scholar
  10. 10.
    Shi L, Fan PS, Wu L, Fang JX, Han ZX (1990) Effects of total saponins of Panax notoginseng on increasing PGI2 in carotid artery and decreasing TXA2 in blood platelets. Chung-Kuo Yao Li Hsueh Pao — Acta Pharmacologica Sinica 11(1): 29–32Google Scholar
  11. 11.
    Jung KY, Kim DS, Oh SR, Lee IS, Lee JJ, Park JD, Kim SI, Lee HK (1998) Platelet activating factor antagonist activity of ginsenosides. Biological and Pharmaceutical Bulletin 21(1): 79–80PubMedCrossRefGoogle Scholar
  12. 12.
    Chen X (1996) Cardiovascular protection by ginsenosides and their nitric oxide releasing action. Clinical and Experimental Pharmacology and Physiology 23(8): 728–732PubMedCrossRefGoogle Scholar
  13. 13.
    Gillis CN (1997) Panax ginseng pharmacology: A nitric oxide link. Biochemical Pharmacology 4(1): 1–8CrossRefGoogle Scholar
  14. 14.
    Zhan Y, Xu XH, Jiang YP (1994) Effects of ginsenosides on myocardial ischemia/reperfiusion damage in open-heart surgery patients. Med J China 74: 626–628Google Scholar
  15. 15.
    Rudakewich M, Ba F, Benishin CG (2001) Neurotrophic and neuroprotective actions of ginsenosides Rb(1) and Rg(1). Planta Medica 67(6): 533–537PubMedCrossRefGoogle Scholar
  16. 16.
    Choi SR, Saji H, Iida Y, Magata Y, Yokoyama A (1996) Ginseng pre-treatment protects against transient global cerebral ischemia in the rat: Measuement of local cerebral glucose utilization by [14C]deoxyglucose autoradiography. Biological and Pharmaceutical Bulletin 19(4): 644–646PubMedCrossRefGoogle Scholar
  17. 17.
    Chen X, Salwinski S, Lee TJ (1997) Extracts of Ginkgo biloba and ginsenosides exert cerebral vasorelaxation via a nitric oxide pathway. Clinical and Experimental Pharmacology and Physiology 24(12): 958–959PubMedCrossRefGoogle Scholar
  18. 18.
    Liao B, Newmark H, Zhou R (2002) Neuroprotective effects of ginseng total saponin and ginsenosides Rbl and Rgl on spinal cord neurons in vitro. Experimental Neurology 173(2): 224–234CrossRefGoogle Scholar
  19. 19.
    Sonnenborn U, Proppert Y (1990) Ginseng (Panax Ginseng C A Meyer). Z Phytother 11: 35–49Google Scholar
  20. 20.
    Filaretov AA, Bogdanova TS, Podvigina TT, Bodganov AI (1988) Role of pituitary-adrenocortical system in body adaptation abilities. Experimental and Clinical Endocrinology 92(2): 129–136PubMedGoogle Scholar
  21. 21.
    Kim DH, Jung JS, Suh HW, Huh SO, MM SK, Son BK, Park JH, Kim ND, Kim YH, Song DK (1998) Inhibition of stress-induced plasma corticosterone levels by ginsenosides in mice: involvement of nitric oxide. Neuroreport 9(10): 2261–2264PubMedCrossRefGoogle Scholar
  22. 22.
    Lewis R, Wake G, Court G, Court JA, Pickering AT, Kim YC Perry, EK (1999) Non-ginsenoside nicotinic activity in Ginseng species. Phytotherapy Research 13: 59–64PubMedCrossRefGoogle Scholar
  23. 23.
    Sala F, Mulet J, Choi S, Jung SY, Nah SY, Rhim H, Valor LM, Criado M, Sala S (2002) Effects of ginsenoside Rg2 on human neuronal nicotinic acetylcholine receptors. J Pharmacology and Experimental Therapeutics 301(3): 1052–1059CrossRefGoogle Scholar
  24. 24.
    Benishin CG (1992) Actions of ginsenoside Rbl on choline uptake in central cholinergic nerve-endings. Neurochemistry International 21(1): 1–5PubMedCrossRefGoogle Scholar
  25. 25.
    Kim HS, Hong YT, Oh KW, Seong YH, Rheu HM, Cho DH, Oh S, Park WK, Jong CG (1998) Inhibition by ginsenosides Rbl and Rgl of methamphetamine-induced hyperactivity, conditioned place preference and post-synaptic dopamine receptor supersensitivity in mice. General Pharmacology 30(5): 783–789PubMedGoogle Scholar
  26. 26.
    Sotaniemi EA, Haapakoski E, Rautio A (1995) Ginseng therapy in non-insulin-dependent diabetic patients. Diabetes Care 18(10): 1373–1375PubMedCrossRefGoogle Scholar
  27. 27.
    Vuksan V, Sievenpiper JL, Koo VYY, Francis T, Beljan-Zdravkovic U, Xu Z, Vidgen E (2000a) American ginseng (Panax quinquefolius L) reduces postprandial glycemia in nondiabetic subjects and subjects with type 2 diabetes mellitus. Archives of Internal Medicine 160(7): 1009–1013CrossRefGoogle Scholar
  28. 28.
    Vuksan V, Stavro MP, Sievenpiper JL, Beljan-Zdravkovic U, Leiter LA, Josse RG, Xu Z (2000b) Similar postprandial glycemic reductions with escalation of dose and administration time of American ginseng in type 2 diabetes. Diabetes Care 23(9): 1221–1226CrossRefGoogle Scholar
  29. 29.
    Vuksan V, Sievenpiper JL, Wong J, Xu Z, Beljan-Zdravkovic U, Arnason JT, Assinewe, Stavro MP, Jenkins AL, Leiter LA et al. (2001) (American ginseng (Panax quinquefolius L.) attenuates postprandial glycemia in a time-dependent but not dose-dependent manner in healthy individuals. American J Clinical Nutrition 73(4): 753–758Google Scholar
  30. 30.
    Bahrke MS, Morgan WP (1994) Evaluation of the ergogenic properties of ginseng. Sports Medicine 18(4): 229–248PubMedCrossRefGoogle Scholar
  31. 31.
    Bahrke MS, Morgan WP (2000) Evaluation of the ergogenic properties of ginseng: An update. Sports Medicine 298(2): 113–133CrossRefGoogle Scholar
  32. 32.
    Vogler BK, Pittler MH, Ernst E (1999) The efficacy of Ginseng. A systematic review of randomised clinical trials. European J Clinical Pharmacology 55(8): 567–575CrossRefGoogle Scholar
  33. 33.
    Kennedy DO, Scholey AB, Wesnes KA (2001a) Differential, dose-dependent changes in cognitive performance and mood following acute administration of Ginseng to healthy young volunteers. Nutritional Neuroscience 4(4): 295–310Google Scholar
  34. 34.
    Kennedy DO, Scholey AB, Wesnes KA (2002a) Modulation of cognition and mood following administration of single doses of Ginkgo biloba, Ginseng and a Ginkgo/Ginseng combination to healthy young adults. Physiology and Behavior 75: 1–13CrossRefGoogle Scholar
  35. 35.
    Scholey AB, Harper S, Kennedy DO (2001) Cognitive demand and blood glucose. Physiol Behav 73: 585–592PubMedCrossRefGoogle Scholar
  36. 36.
    Wesnes K, Luthringer R, Ambrosetti L, Edgar C, Petrini O (2003) The effects of a combination of Panax ginseng, vitamins and minerals on mental performance, mood and physical fatigue in nurses working night shifts: A double-blind, placebo controlled trial. Current Topics in Nutraceutical Research 1: 169–174Google Scholar
  37. 37.
    Kennedy D, Scholey AB, Drewery L, Marsh VR, Moore B, Ashton H (2003) Electroencephalograph (EEG) effects of single doses of Ginkgo biloba and Panax ginseng in healthy young volunteers. Pharmacol Biochem Behav 75: 701–709PubMedCrossRefGoogle Scholar
  38. 38.
    Major RT (1967) The ginkgo, the most ancient living tree. Science 15, 157(794): 1270–1273CrossRefGoogle Scholar
  39. 39.
    Foster (1996) Ginkgo: Ginkgo biloba (botanical series 304) American Botanical Society, Austin, TexasGoogle Scholar
  40. 40.
    Ernst E. (2000) Herbal medicines: Where is the evidence? Growing evidence of effectiveness is counterbalanced by inadequate regulation. British Medical Journal 321 (7258): 395–396PubMedCrossRefGoogle Scholar
  41. 41.
    Jacobs BP, Browner WS (2000) Ginkgo biloba: A living fossil. American J Medicine108: 341–342Google Scholar
  42. 42.
    Kleijnen J, Knipschild P (1992) Ginkgo biloba. Lancet 12, 340(8833): 1474Google Scholar
  43. 43.
    Smith PF, Maclennan K, Darlington CL (1996) The neuroprotective properties of theGinkgo biloba leaf: A review of the possible relationship to platelet-activating factor (PAF). J Ethnopharmacology 50(3): 131–139CrossRefGoogle Scholar
  44. 44.
    Akiba S, Kawauchi T, Oka T, Hashizume T, Sato T (1998) Inhibitory effect of the leaf extract of Ginkgo biloba L. on oxidative stress-induced platelet aggregation. Biochemistry and Molecular Biology International 46(6): 1243–1248PubMedGoogle Scholar
  45. 45.
    Stromgaard K, Saito DR, Shindou H, Ishii S, Shimizu T, Nakanishi K (2002) Ginkgolide derivatives for photolabeling studies: Preparation and pharmacological evaluation. J Medicinal Chemistry 45(18): 4038–4046CrossRefGoogle Scholar
  46. 46.
    Siddique MS, Eddeb F, Mantle D, Mendelow AD (2000) Extracts of Ginkgo biloba and Panax ginseng protect brain proteins from free radical induced oxidative damage in vitro. Acta Neurochir 76: 87–90Google Scholar
  47. 47.
    Hibatallah J, Carduner C, Poelman MC (1999) In vivo and in vitro assessment of the free-radicalscavenger activity of Ginkgo flavone glycosides at high concentrations. J Pharmacy and Pharmacology 51(12): 1435–1440CrossRefGoogle Scholar
  48. 48.
    Droy-Lefaix MT (1997) Effect of the antioxidant action of Ginkgo biloba extract (Egb 761) on aging and oxidative stress. Age 20: 141–149CrossRefGoogle Scholar
  49. 49.
    Kristoikova Z, Klaschka J (1997) In vitro effect of Ginkgo biloba extract (EGb 761) on the activity of presynaptic cholinergic nerve terminals in rat hippocampus. Dementia and Geriatric Cognitive Disorders 8(1): 43–48CrossRefGoogle Scholar
  50. 50.
    Ramassamy C, Christen Y, Clostre F, Costentin J (1992) The Ginkgo biloba extract, EGb761, increases synaptosomal uptake of 5-hydroxytryptamine: in vitro and ex vivo studies. J Pharmacy and Pharmacology 44(11): 943–945CrossRefGoogle Scholar
  51. 51.
    Taylor JE (1986) Neuromediator binding to receptors in the rat brain. The effect of chronic administration of Ginkgo biloba extract. Presse Medicale 15(31): 1491–1493Google Scholar
  52. 52.
    Huguet F, Tarrade T (1992) Alpha 2-adrenoceptor changes during cerebral ageing. The effect of Ginkgo biloba extract. J Pharmacy and Pharmacology 44(1): 24–27CrossRefGoogle Scholar
  53. 53.
    Topp S, Knoefel WT, Schutte S, Brilloff S, Rogiers X, Gubdlach M (2001) Ginkgo biloba (Egb761) improves microcirculation after warm water ischemia of the rat liver. Transplantation proceedings 33: 979–981Google Scholar
  54. 54.
    Krieglstein J, Beck T, Seibert A (1986) Influence of an extract of Ginkgo biloba on cerebral blood flow and metabolism. Life Sciences 39(24): 2327–2334PubMedCrossRefGoogle Scholar
  55. 55.
    Chung HS, Harris A, Kristinsson JK, Ciulla TA, Kagemann C, Ritch R (1999) Ginkgo biloba extract increases ocular blood flow velocity. J Ocular Pharmacology and Therapeutics 15(3): 233–240CrossRefGoogle Scholar
  56. 56.
    Jung F, Mrowietz C, Kiesewetter H, Wenzel E (1990) Effect of Ginkgo biloba on fluidity of blood and peripheral microcirculation in volunteers. Arzneimittel-Forschung 40(5): 589–593PubMedGoogle Scholar
  57. 57.
    Koltringer P, Langsteger W, Klima G, Reisecker F, Eber (1993) Hemorrheologic effects of Ginkgo biloba extract EGb 761. Dose-dependent effect of EGb 761 on microcirculation and viscoelasticity of blood. Fortschritte der Medizin 111(10): 170–172PubMedGoogle Scholar
  58. 58.
    Klein J, Chatterjee SS, Loffelholz K (1997) Phospholipid breakdown and choline release under hypoxic conditions: inhibition by bilobalide, a constituent of Ginkgo biloba. Brain Res 755(2): 347–350PubMedCrossRefGoogle Scholar
  59. 59.
    Janssens D, Remade J, Drieu K, Michiels C (1999) Protection of mitochondria] respiration activity by bilobalide. Biochemical Pharmacology 58(1): 109–119PubMedCrossRefGoogle Scholar
  60. 60.
    Oberpichler H, Beck T, Abdel-Rahman MM, Bielenberg GW, Krieglstein J (1988) Effects of Ginkgo biloba constituents related to protection against brain damage caused by hypoxia. Pharmacological Research Communications 20(5): 349–368PubMedCrossRefGoogle Scholar
  61. 61.
    Bruno C, Cuppini R, Sartini S, Cecchini T, Ambrogini P, Bombardelli E (1993) Regeneration of motor nerves in bilobalide-treated rats. Planta Medica 59(4): 302–307PubMedCrossRefGoogle Scholar
  62. 62.
    Attella MJ, Hoffman SW, Stasio MJ, Stein (1989) Ginkgo biloba extract facilitates recovery from penetrating brain injury in adult male rats. Experimental Neurology 105(1): 62–71PubMedCrossRefGoogle Scholar
  63. 63.
    Tadano T, Nakagawasai O, Tan-no K, Morikawa Y, Takahashi N, Kisara K (1998) Effects of Ginkgo biloba extract on impairment oflearning induced by cerebral ischemia in mice. American J Chinese Medicine 26(2): 127–132CrossRefGoogle Scholar
  64. 64.
    Lee EJ, Chen HY, Wu TS, Chen TY (2002) Maynard KI. Acute administration of Ginkgo biloba extract (EGb 761) affords neuroprotection against permanent and transient focal cerebral ischemia in Sprague-Dawley rats. J Neuroscience Research 68(5): 636–645CrossRefGoogle Scholar
  65. 65.
    Birks J, Grimley Evans J, Van Dongen M (2003) Ginkgo biloba for cognitive impairment and dementia (Cochrane Review). In: The Cochrane Library, Issue 1, Oxford, Update SoftwareGoogle Scholar
  66. 66.
    Mix JA, Crews WD (2000) An examination of the efficacy of Ginkgo biloba extract EGb761 on the neuropsychologic functioning of cognitively intact older adults. J Alternative and Complementary Medicine 6(3): 219–229CrossRefGoogle Scholar
  67. 67.
    Solomon PR, Adams F, Silver A, Zimmer J, DeVeaux R (2002) Ginkgo for memory enhancement: a randomized controlled trial. JAMA21; 288 (7): 835–840CrossRefGoogle Scholar
  68. 68.
    Stough C, Clarke J, Lloyd J, Nathan PJ (2001) Neuropsychological changes after 30-day Ginkgo biloba administration in healthy participants. International J Neuropsychophannacology 4(2): 131–134Google Scholar
  69. 69.
    Moulton PL, Boyko NB, Fitzpatrick JL, Petros TV (2001) The effect of Ginkgo biloba on memory in healthy male volunteers. Physiology and Behaviour 73: 659–665CrossRefGoogle Scholar
  70. 70.
    Hindmarch I (1986) Activity of Ginkgo biloba extract on short-term memory. Presse Medicate 15(31): 1592–1594Google Scholar
  71. 71.
    Warot D, Lacomblez L, Danjou P, Weiller E, Payan C, Puech AJ (1991) Comparative effects of Ginkgo biloba extracts on psychomotor performances and memory in healthy subjects. Therapie 46(1): 33–36PubMedGoogle Scholar
  72. 72.
    Igney U, Kimber S, Hindmarch I (1999) The effects of acute doses of standardised Ginkgo biloba extract on memory and psychomotor performance in volunteers. Phytotherapy Research 13(5): 408–415CrossRefGoogle Scholar
  73. 73.
    Kennedy DO, Scholey AB, Wesnes KA (2000) The dose-dependent cognitive effects of acute administration of Ginkgo biloba to healthy young volunteers. Psychopharmacology 151: 416–423PubMedCrossRefGoogle Scholar
  74. 74.
    Wesnes KA, Faleni RA, Hefting NR, Hoogsteen G, Houben JJG, Jenkins E, Jonkman JHG, Leonard J, Petrini O, van Lier JJ (1997) The cognitive, subjective, and physical effects of a Ginkgo biloba/Panax ginseng combination in healthy volunteers with neurasthenic complaints. Psychopharmacology Bulletin 33: 677–683PubMedGoogle Scholar
  75. 75.
    Wesnes KA, Ward T, McGinty A, Petrini O (2000) The memory enhancing effects of a Ginkgo biloba/Panax ginseng combination in healthy middle aged volunteers. Psychopharmacology 152: 353–361PubMedCrossRefGoogle Scholar
  76. 76.
    Kennedy DO, Scholey AB, Wesnes KA. (2001b) Differential, dose-dependent changes in cognitive performance following acute administration of a Ginkgo biloba/Panax ginseng combination to healthy young volunteers. Nutritional Neuroscience 4(5): 399–412Google Scholar
  77. 77.
    Perry EK, Pickering AT, Wang WW, Houghton PJ, Perry NSL (1999) Medicinal plants and Alzheimer’s disease: From ethnobotany to phytotherapy. J Pharmacy and Pharmacology 51: 527–534CrossRefGoogle Scholar
  78. 78.
    Perry N, Court G, Bidet N, Court J, Perry E (1996) European herbs with cholinergic activities: Potential in dementia therapy. International J Geriatric Psychiatry 11: 1063–1069CrossRefGoogle Scholar
  79. 79.
    Perry NSL, Houghton P, Theobald A, Jenner P, Perry EK (2000)In vitro inhibition of human erythrocyte acetylcholinesterase by Salvia lavandulaefolia essential oil and constituent terpenes. J Pharmacy and Pharmacology 52: 895–902CrossRefGoogle Scholar
  80. 80.
    Perry NSL, Houghton PJ, Jenner P, Keith A, Perry EK (2002) Salvia lavandulaefolia essential oil inhibits cholinesterase in vivo. Phytomedicine 9: 48–51PubMedCrossRefGoogle Scholar
  81. 81.
    Wake G, Court J, Pickering A, Lewis R, Wilkins R Perry E (2000) CNS acetylcholine receptor activity in European medicinal plants traditionally used to improve failing memory. J Ethnopharmacology 69: 105–114CrossRefGoogle Scholar
  82. 82.
    Mantle D, Eddeb F, Pickering A (2000) Comparison of relative antioxidant activities of British medicinal plant species in vitro. J Ethnopharmacology 72: 47–51CrossRefGoogle Scholar
  83. 83.
    Hohmann J, Zupko I, Redei D, Csanyi M, Falkay G, Mathe I, Janicsak G (1999) Protective effects of the aerial parts of Salvia officinalis, Melissa officinalis and Lavandula angustifolia and their constituents against enzyme-dependent and enzyme-independent lipid peroxidation. Planta Medica 65: 576–578PubMedCrossRefGoogle Scholar
  84. 84.
    Perry NSL, Houghton PJ, Sampson J, Theobald AE, Hart S, Lis-Balchin M, Hoult JRS, Evans P, Jenner P, Milligan S, Perry EK (2001) In vitro activities of S. lavandulaefolia (Spanish Sage) relevant to treatment of Alzheimer’s disease. J Pharmacy and Pharmacology 53: 1347–1356CrossRefGoogle Scholar
  85. 85.
    Tildesley NTJ, Kennedy DO, Perry EK, Ballard CG, Savalev S, Wesnes KA, Scholey AB (2003) Salvia lavandulaefolia (Spanish Sage) enhances memory in healthy young volunteers. Pharmacol Biochem Behav 75: 669–674PubMedCrossRefGoogle Scholar
  86. 86.
    Tildesley NTJ, Kennedy DO, Ballard CG, Wesnes KA, Hylands P, Perry EK, Scholey AB Sage Improves Memory and Attention in Healthy Older Volunteers: A controlled double blind acute study; submitted Google Scholar
  87. 87.
    Kennedy DO, Scholey AB, Tildesley NTJ, Perry EK, Wesnes KA (2002b) Modulation of mood and cognitive performance following acute administration of single doses of Melissa officinalis (Lemon Balm). Pharmacology, Biochemistry and Behavior 72(4): 953–964CrossRefGoogle Scholar
  88. 87a.
    Kiss B, Karpati E (1996) Mechanism of action of vinpocetine. Acta Pharm Hung 66(5): 213–224PubMedGoogle Scholar
  89. 87b.
    Orvisky E, Soltes L, Stancikera M (1997) High-molecular-weight hyaluronan — a valuable tool in testing the antioxidative activity of amphiphilic drugs stobadine and vinpocetine. J Pharm Biomed Anal 16(3): 419–424PubMedCrossRefGoogle Scholar
  90. 87c.
    Santos MS, Duarte AI, Moreira PJ, Oliveira CR (2000) Synaptosomal response to oxidative stress: effect of vinpcetine. Free Radic Res 32(1): 57–66PubMedCrossRefGoogle Scholar
  91. 88.
    Yasui M, Yano I, Ota K, Oshima A (1990) Contents of calcium, phosphorus and aluminum in central nervous system, liver and kidney of rabbits with experimental atherosclerosis — scavenger effects of vinpocetine on the deposition of elements. No To Shinkei 42(4): 325–331PubMedGoogle Scholar
  92. 89.
    Imre G (1986) Use of Cavinton drip infusion in ophthalmology. II. Effect of Cavinton drip infusion in eye diseases caused by vascular occlusion or stenosis. Ther Hung 34 (2): 84–86PubMedGoogle Scholar
  93. 90.
    Konopka W, Zalewski P, Olszewski J, Olszewska-Ziaber A, Pietkiewicz P (1997) Treatment results of acoustic trauma. Otolaryngol Pol 51 Suppl 25: 281–284Google Scholar
  94. 91.
    King GA (1987) Protective effects of vinpocetine and structurally related drugs on the lethal consequences of hypoxia in mice. Arch Int Pharmacodyn Ther 286(2): 299–307PubMedGoogle Scholar
  95. 92.
    DeNoble VJ (1987) Vinpocetine enhances retrieval of a step-through passive avoidance response in rats. Int OM Psychopharmacol 2(4): 325–331CrossRefGoogle Scholar
  96. 93.
    Bhatti JZ, Hindmarch I (1987) Vinpocetine effects on cognitive impairments produced by flunitrazepam. Int Clin Psychopharmacol Oct 2(4): 325–331CrossRefGoogle Scholar
  97. 94.
    Balestreri R, Fontana L, Astengo F (1987) A double-blind placebo controlled evaluation of the safety and efficacy of vinpocetine in the treatment of patients with chronic vascular senile cerebral dysfunction. J Am Geriatr Soc 35(5): 425–430PubMedGoogle Scholar
  98. 95.
    Hindmarch I, Fuchs HH, Erzigkeit H (1991) Efficacy and tolerance of vinpocetine in ambulant patients suffering from mild to moderate organic psychosyndromes. Int Clin Psychopharmacol 6(1): 31–43PubMedCrossRefGoogle Scholar
  99. 96.
    Thal LJ, Salmon DP, Lasker B, Bower D, Klauber MR (1989) The safety and lack of efficacy of vinpocetine in Alzheimer’s disease. J the American Geriatrics Society 37: 515–520Google Scholar
  100. 97.
    McKay Hart A, Wiberg M, Terenghi G (2002) Pharmacological enhancement of peripheral nerve regeneration in the rat by systemic acetyl-L-carnitine treatment. Neurosci Lett 16 334(3): 181–185Google Scholar
  101. 98.
    Castorina M, Ferraris L (1994) Acetyl-L-carnitine affects aged brain receptorial system in rodents. Life Sci 54(17): 1205–1214PubMedCrossRefGoogle Scholar
  102. 99.
    Ando S, Tadenuma T, Tanaka Y, Fukui F, Kobayashi S, Ohashi Y, Kawabata T (2001) Enhancement of learning capacity and cholinergic synaptic function by carnitine in aging rats. J Neurosci Res 66(2): 266–271PubMedCrossRefGoogle Scholar
  103. 100.
    Dhitavat S, Ortiz D, Shea TB, Rivera ER (2002) Acetyl-L-carnitine protects against amyloid-beta neurotoxicity: Roles of oxidative buffering and ATP levels. Neurochem Res 27(6): 501–505PubMedCrossRefGoogle Scholar
  104. 101.
    Hagen TM, Liu J, Lykkesfeldt J, Wehr CM, Ingersoll RT, Vinarsky V, Bartholomew JC, Ames BN (2002) Feeding acetyl-L-carnitine and lipoic acid to old rats significantly improves metabolic function while decreasing oxidative stress. Proc Nail Acad Sci USA 99(4): 1870–1875CrossRefGoogle Scholar
  105. 102.
    Montgomery SA, Thal LJ, Amrein R (2003) Meta-analysis of double blind randomized controlled clinical trials of acetyl-L-carnitine versus placebo in the treatment of mild cognitive impairment and mild Alzheimer’s disease. Int Clin Psychopharmacol 18(2): 61–71PubMedCrossRefGoogle Scholar
  106. 103.
    Corwin J, Dean RL, Bartus RT, Rotrosen J, Watkins DL (1985) Behavioral effects of phosphatidylserine in the aged Fischer 344 rat: Amelioration of passive avoidance deficits without changes in psychomotor task performance. Neurobiol Aging 6(1): 11–15PubMedCrossRefGoogle Scholar
  107. 104.
    Crook TH, Tinklenberg J, Yesavage J, Petrie W, Nunzi MG, Massari DC (1991) Effects of phosphatidylserine in age-associated memory impairment. Neurology 41(5): 644–649PubMedCrossRefGoogle Scholar
  108. 105.
    Delwaide PJ, Gyselynck-Mambourg AM, Hurlet A, Ylieff M (1986) Double-blind randomized controlled study of phosphatidylserine in senile demented patients. Acta Neurol Scand 73(2): 136–140PubMedCrossRefGoogle Scholar
  109. 106.
    Engel RR, Satzger W, Gunther W, Kathmann N, Bove D, Gerke S, Munch U, Hippius H (1992) Double-blind cross-over study of phosphatidylserine versus placebo in patients with early dementia of the Alzheimer type. Eur Neuropsychopharmacol 2(2): 149–155PubMedCrossRefGoogle Scholar
  110. 107.
    Pepeu G, Spignoli G (1989) No-otropic drugs and brain cholinergic mechanisms. Prog Neuropsychopharmacol Biol Psychiatry 13 Suppl: S77–88PubMedCrossRefGoogle Scholar
  111. 108.
    Maggioni M, Picotti GB, Bondiolotti GP, Panerai A, Cenacchi T, Nobile P, Brambilla F (1990) Effects of phosphatidylserine therapy in geriatric patients with depressive disorders. Acta Psychiatr Scand 81(3): 265–270PubMedCrossRefGoogle Scholar
  112. 109.
    Schreiber S, Kampf-Sherf O, Gorfine M, Kelly D, Oppenheim Y, Lerer B (2000) An open trial of plant-source derived phosphatydilserine for treatment of age-related cognitive decline. Isr J Psychiatry Relat Sci 37(4): 302–307PubMedGoogle Scholar
  113. 110.
    Liu JS, Zhu YL, Yu CM et al. (1986) The structure of huperzine A and B, two new alkaloids exhibiting marked anticholinesterase activity. Can J Chem 64: 837–839CrossRefGoogle Scholar
  114. 111.
    Ashani Y, Peggins JO, Doctor BP (1992) Mechanism of inhibition of cholinesterase by huperzine A. Biochem Biophys Res Comm 184: 7719–7726CrossRefGoogle Scholar
  115. 112.
    Gordon RK, Nigam SV, Weitz JA, Dave JR, Doctor BP, Ved HS (2001) The NMDA receptor ion channel: A site for binding of Huperzine A. J Appl Toxicol 21 (Supp11): S47–51PubMedCrossRefGoogle Scholar
  116. 113.
    Perry EK, Perry RH, Blessed G, Tomlison BE (1978a) Changes in brain cholinesterases in senile dementia of Alzheimer type. Neuropathol Appl Neurobiol 4(4): 273–277CrossRefGoogle Scholar
  117. 114.
    Zhu XD, Giacobini E (1995) Second generation cholinesterase inhibitors: Effect of (L)-huperzine A on cortical biogenic amines. J Neurosci Res 41: 828–835PubMedCrossRefGoogle Scholar
  118. 115.
    Roman S, Vivas NM, Badia A, Clos MV (2002) Interaction of a new potent anticholinesterasic compound (+/-)huprine X with muscarinic receptors in rat brain. Neurosci Lett 325(2): 103–106PubMedCrossRefGoogle Scholar
  119. 116.
    Sattler R, Tymianski M (2000) Molecular mechanisms of calcium-dependent excitotoxicity. J Mol Med 78(1): 3–13PubMedCrossRefGoogle Scholar
  120. 117.
    Choi, DW (1994) Calcium and excitotoxic neuronal injury. Ann N Y Acad Sci 747: 162–171PubMedCrossRefGoogle Scholar
  121. 118.
    Grunwald J, Raveh L, Doctor BP, Ashani Y (1994) Huperzine A as a pre-treatment candidate drug against nerve agent toxicity. Life Sci 54: 991–997PubMedCrossRefGoogle Scholar
  122. 119.
    Xu SS, Cai ZY, Qu ZW et al. (1999) Huperzine-A in capsules and tablets for treating patients with Alzheimer’s disease. Acta Pharmacol Sin 20: 486–490Google Scholar
  123. 120.
    Xiao XQ, Wang R, Tang XC (2000) Huperzine A and tacrine attenuate beta-amyloid peptide-induced oxidative injury. J Neurosci Res 61: 564–569PubMedCrossRefGoogle Scholar
  124. 121.
    Bai DL, Tang XC, He XC (2000) Huperzine A, a potential therapeutic agent for treatment of Alzheimer’s disease. Curr Med Chem 7(3): 355–374PubMedCrossRefGoogle Scholar
  125. 122.
    Scott LJ, Gao KL (2000) Galantamine a review of its use in Alzheimer’s disease. Drugs 60(5): 1095–1122PubMedCrossRefGoogle Scholar
  126. 123.
    Ballard CG (2002) Advances in the treatment of Alzheimer’s disease: Benefits of dual cholinesterase inhibition. Eur Neurol 47: 64–70PubMedCrossRefGoogle Scholar
  127. 124.
    heng DH, Tang XC (1998) Comparative studies of huperzine A, E2020, and tacrine on behavior and cholinesterase activities. Pharmacol Biochem Behav 60: 377–386CrossRefGoogle Scholar
  128. 125.
    Tang XC, De Sarno P, Sugaya K, Giacobini E (1989) Effect of huperzine A, a new cholinesterase inhibitor, on the central cholinergic system of the rat. J Neurosci Res 24: 276–285PubMedCrossRefGoogle Scholar
  129. 126.
    Laganiere S, Corey J, Tang XC, Wfilfert E, Hanin I (1991) Acute and chronic studies with the anticholinesterase huperzine A: Effect on central nervous system cholinergic parameters. Neuropharmacology 30: 763–768PubMedCrossRefGoogle Scholar
  130. 127.
    Tang XC, Han YF (1999) Pharmacological profile of huperzine A, a novel acetylcholinesterase inhibitor from Chinese herb. CNS Drug Reviews 5: 281–300CrossRefGoogle Scholar
  131. 128.
    Zhang RW, Tang XC, Han YY et al. (1991) Drug evaluation of huperzine A in the treatment of senile memory disorders. Acta Pharmacol Sin 12: 250–252Google Scholar
  132. 129.
    Xu SS, Cai ZY, Qu ZW, Yang RM, Cai YL, Wang GQ, Su XQ, Zhong XS, Cheng RY, Xu WA, Li JX, Feng B (1995) Efficacy of tablet huperzine-A on memory, cognition and behavior in Alzheimer’s disease. Acta Pharmacol Sin 16: 391–395Google Scholar
  133. 130.
    Zhang Z, Wang X, Chen Q, Shu L, Wang J, Shan G (2002) Clinical efficacy and safety of huperzine Alpha in treatment of mild to moderate Alzheimer disease, a placebo-controlled, double-blind, randomized trial. Natl Med J China 82(14): 941–944Google Scholar
  134. 131.
    Zangara A (2003) The psychopharmacology of Huperzine A: An alkaloid with cognitive enhancing and neuroprotective properties of interest in the treatment of Alzheimer’s disease. Pharmacol Biochem Behav 75: 675–686PubMedCrossRefGoogle Scholar
  135. 132.
    Jian YB, Huang S, Huang L (2002) The improvement of Huperzine A on cognitive functions and behaviour of Alzheimer’s patients. Clinical Med China 18(9): 802–803 (from abstract, in Chinese)Google Scholar
  136. 133.
    Sun QQ, Xu SS, Pan JL, Guo HM, Cao WQ (1999) Efficacy of huperzine A capsules on memory and learning performance in 34 pairs of matched junior middle school students. Acta Pharmacol Sin 20: 601–603Google Scholar
  137. 134.
    Qian BC, Wang M, Zhou ZF, Chen K, Zhou RR, Chen GS (1995) Pharmacokinetics of tablet huperzine A in six volunteers. Acta Pharmacol Sin 16: 396–398Google Scholar
  138. 135.
    Dye L, Lluch A, Blundell J (2000) Macronutrients and performance. Nutrition 16: 1021–1034PubMedCrossRefGoogle Scholar
  139. 136.
    Gibson EL, Green MW (2002) Nutritional influences on cognitive function: Mechanisms of susceptibility. Nutr Res Rev: 169–206Google Scholar
  140. 137.
    Fillenz M, Lowry JP, Boutelle MG, Fray AE (1999) The role of astrocytes and noradrenaline in neuronal glucose metabolism. Acta Physiologica Scandinavia 167: 275–284CrossRefGoogle Scholar
  141. 138.
    Weiss V (1986) From memory span to the quantum mechanics of intelligence. Personality Ind Diff 7: 737–749CrossRefGoogle Scholar
  142. 139.
    Roland PE (1993) Brain Activation. Wiley, New YorkGoogle Scholar
  143. 140.
    Gold PE, Macleod KM, Thompson IJ, Frier BM (1985) Hypoglaecemic-induced cognitive dysfunction in diabetes mellitus; effects of hypoglaecemic unawareness. Physiol Behav 58: 501–511CrossRefGoogle Scholar
  144. 141.
    Holmes CS, Koepke KM, Thompson RG, Gyves PW, Weydert JA (1984) Verbal fluency and naming performance in type I diabetics at different blood glucose concentrations. Diabetes Care 7: 454–459PubMedCrossRefGoogle Scholar
  145. 142.
    Taylor LA, Rachman SJ (1987) The effects of blood sugar level changes on cognitive function, affective state and somatic symptoms. J Behav Med 11: 279–291CrossRefGoogle Scholar
  146. 143.
    De Feo P, Gallai V, Mazzotta G, Crispino G, Torlone E, Perriello G, Ventura M, Santusaneo F, Brunetti P, Bolli GB (1988) Modest decrements in plasma glucose concentrations cause early impairment in cognitive function and later activation of glucose counter-regulation in the absence of hypoglycaemic symptoms. J Clin Investigation 82: 436–444CrossRefGoogle Scholar
  147. 144.
    Sarti C, Pantoni L, Bartolini L, Inzitari D (2002) Cognitive impairment and chronic cerebral hypoperfusion: What can be learned from experimental models. J the Neurological Sciences 203–204: 263–266CrossRefGoogle Scholar
  148. 145.
    Kramer AF, Coyne JT, Strayer DL (1993) Cognitive function at high altitude. Human Factors 35: 329–344PubMedGoogle Scholar
  149. 146.
    Crowley JS, Wesenten NW, Kamimori G, Devine ME, Iwanyk E, Balkin T (1992) Effects of high terrestrial altitude and supplemental oxygen on human performance and mood. Aviat Space Eviron Med 63: 696–701Google Scholar
  150. 147.
    Moss MC, Scholey AB (1996) Oxygen administration enhances memory formation in healthy young adults. Psychopharmacology 124: 255–260PubMedCrossRefGoogle Scholar
  151. 148.
    Moss MC, Scholey AB, Wesnes K (1998) Oxygen administration selectively enhances cognitive performance in healthy young adults: A placebo-controlled double blind crossover study. Psychopharmacology 138: 27–33PubMedCrossRefGoogle Scholar
  152. 149.
    Scholey AB, Moss MC, Wesnes KA (1998) Oxygen and cognitive performance: the temporal relationship between hyperoxia and enhanced memory. Psychopharmacology 140: 123–126PubMedCrossRefGoogle Scholar
  153. 150.
    Scholey AB, Moss MC, Neave N, Wesnes K (1999) Cognitive performance, hyperoxia and heart rate following oxygen administration in healthy young adults. Physiol Behav 67: 783–789PubMedCrossRefGoogle Scholar
  154. 151.
    Winder R, Borrill J (1998) Fuels for memory: The role of oxygen and glucose in memory enhancement. Psychopharmacology 136: 349–356PubMedCrossRefGoogle Scholar
  155. 152.
    Andersson J, Berggren P, Gronkvist M, Magnusson S, Svensson E (2002) Oxygen saturation and cognitive performance. Psychopharmacology 162: 119–128PubMedCrossRefGoogle Scholar
  156. 153.
    Manning CA, Hall JL, Gold PE (1990) Glucose effects on memory and other neuropsychological tests in elderly humans. Psychol Sci 1: 307–311CrossRefGoogle Scholar
  157. 154.
    Gonder-Frederick L, Hall JL, Vogt J, Cox DJ, Green J, Gold PE (1987) Memory enhancement in elderly humans: Effects of glucose ingestion. Physiol Behav 41: 503–504PubMedCrossRefGoogle Scholar
  158. 155.
    Benton D, Owens D (1993) Is raised blood glucose associated with the relief of tension. J Psychosom Res 37: 1–13CrossRefGoogle Scholar
  159. 156.
    Benton D, Owens DA Parker PY (1994) Blood glucose memory and attention. Neuropsychologia 32: 595–607PubMedCrossRefGoogle Scholar
  160. 157.
    Craft S, Murphy C, Wernstrom J (1994) Glucose effects on complex memory and non-memory tasks: The influence of age, sex and glucoregulatory response. Psychobiology 22: 95–105Google Scholar
  161. 158.
    Benton D, Parker PY (1998) Breakfast, blood glucose and cognition. Am J Clin Nutr 67(suppl): 772–778Google Scholar
  162. 159.
    Foster JK, Lidder PG, Siinram S (1998) Glucose and memory: Fractionation of enhancement effects. Psychopharmacology 137: 259–270PubMedCrossRefGoogle Scholar
  163. 160.
    Siinram-Lea SI, Foster JK, Durlach P, Perez C (2001) Examination of the relation of fast-duration, time of day and pre-consumption baseline plasma glucose levels on the glucose facilitation of cognitive performance effect. Psychopharmacology 157(1): 46–54CrossRefGoogle Scholar
  164. 161.
    Siinram-Lea SI, Foster JK, Durlach P, Perez C (2002a) Investigation into the significance of task difficulty and divided allocation of resources on the glucose memory facilitation effect. Psychopharmacology 160: 387–397CrossRefGoogle Scholar
  165. 162.
    Siinram-Lea SI, Foster JK, Durlach P, Perez C (2002b) The effect of retrograde and anterograde glucose administration on memory performance in healthy young adults. Behav Brain Res 134: 505–516CrossRefGoogle Scholar
  166. 163.
    Azari NP (1991) Effects of glucose on memory processes in young adults. Psychopharmacology 105: 521–524PubMedCrossRefGoogle Scholar
  167. 164.
    Ford CE, Scholey AB, Ayre G, Wesnes K (2002) The effect of glucose administration and the emotional content of words on heart rate and memory. J Psychopharmacol 16: 241–244PubMedCrossRefGoogle Scholar
  168. 165.
    Martin PY, Benton D (1999) The influence of a glucose drink on a demanding working memory task. Physiol Behav 67: 69–74PubMedCrossRefGoogle Scholar
  169. 166.
    Kennedy DO, Scholey AB (2000) Glucose administration, heart rate and cognitive performance: Effects of increasing mental effort. Psychopharmacology 149: 63–71PubMedCrossRefGoogle Scholar
  170. 167.
    Scholey AB and Fowles K (2002) Retrograde enhancement of kinesthetic memory by low dose alcohol and by glucose. Neurobiology of Learning and Memory 78: 477–483PubMedCrossRefGoogle Scholar
  171. 168.
    Owens DS, Benton D (1994) The impact of raising blood glucose on reaction times. Neuropsychobiology 30: 106–113PubMedCrossRefGoogle Scholar
  172. 169.
    Benton D (1990) The impact of increasing blood glucose levels on psychological functioning. Biol Psychol 30: 13–19PubMedCrossRefGoogle Scholar
  173. 170.
    Parker PY, Benton D (1995) Blood glucose levels selectively influences memory for words dichotically presented to the right ear. Neuropsychologia 33: 843–854PubMedCrossRefGoogle Scholar
  174. 171.
    Donohoe RT, Benton D (1999) Declining blood glucose levels after a cognitively demanding task predict subsequent memory. Nutrit Neuroscience 2: 413–424Google Scholar
  175. 172.
    Awad N, Gagnon M, Desrochers A, Tsiakas M, Messier C (2002) Impact of peripheral glucoregulation on memory. Behav Neurosci 116: 691–702PubMedCrossRefGoogle Scholar
  176. 173.
    Gold PE (1995) Role of glucose in regulating the brain and cognition. Int J Clin Nutr 61: 987–995Google Scholar
  177. 174.
    Wenk GL (1989) An hypothesis of the role of glucose in the mechanism of cognitive enhancers. Psychopharmacology 99: 431–438PubMedCrossRefGoogle Scholar
  178. 175.
    Williams CL, McGaugh JL (1992) Reversible inactivation of the nucleus of the solitary tract impairs retention performance in an inhibitory avoidance task. Behav Neurol Biol 58: 20–40CrossRefGoogle Scholar
  179. 176.
    Cahill L, Prins B, Weber M, McGaugh JL (1994) a-adrenergic activation and memory for emotional events. Nature 371: 702–704PubMedCrossRefGoogle Scholar
  180. 177.
    Nielson KA, Radtke RC, Jensen RA (1996) Arousal induced modulation of memory storage processes in humans. Neurobiology of Learning and Memory 66(2): 133–142PubMedCrossRefGoogle Scholar
  181. 178.
    Fibiger W, Evans O, Singer G (1986) Hormonal responses to graded mental workload. Eur J Appl Physiol 55: 339–343CrossRefGoogle Scholar
  182. 179.
    Carroll D, Turner JR, Prasad R (1986) The effects of level of difficulty of mental arithmetic challenge on heart rate and oxygen consumption. Intl Psychophysiol 4: 167–173CrossRefGoogle Scholar
  183. 180.
    Mulder G, Mulder LMJ (1981) Information processing and cardiovascular control. Psychophysiology 18: 392–402PubMedCrossRefGoogle Scholar
  184. 181.
    Backs WR, Seljos KA (1994) Metabolic and cardiorespiratory measures of mental effort: the effects of level of difficulty in a working memory task. Int J Psychophysiol 16: 57–68PubMedCrossRefGoogle Scholar
  185. 182.
    Jonides J, Schumacher EH, Smith EE, Lauber EK, Awh E, Satoshi M, Koeppe RA (1997) Verbal working memory load affects regional brain activation as measured by PET J Cog Neurosci 9: 462–475CrossRefGoogle Scholar
  186. 183.
    Haier RJ, Siegel BV, MacLachlin A, Suderling E, Lottenberg S, Buchsbaum MS (1992) Regional glucose metabolic changes after learning a complex visuo-spatial/motor task: A positron Emission Tomographic study. Brain Res 570: 134–143PubMedCrossRefGoogle Scholar
  187. 184.
    Parks RW, Loewenstein DA, Dodrill KL, Barker WW, Yoshii F, Chang JY, Emran A, Apicella A, Sherameta WA, Duara R (1988) Cerebral metabolic effects of a verbal fluency test: A PET scan study. J Clin Exp Neuropsychol 10: 565–575PubMedCrossRefGoogle Scholar
  188. 185.
    Wesnes K, Pincock C (2002) Practice effects on cognitive tasks: a major problem? The Lancet Neurology 1: 473CrossRefGoogle Scholar
  189. 186.
    McClelland GR (1987) The effects of practice on measures of performance. Human Psychopharmacol 210: 109–118CrossRefGoogle Scholar
  190. 187.
    Wilson RS, Beckett LA, Barnes LL et al. (2002) Individual differences in rates of change in cognitive abilities of older persons. Psychology and Aging 17: 179–193PubMedCrossRefGoogle Scholar
  191. 188.
    Tripathi YB, Chaurasia S, Tripathi E, Upadhyay A, Dubey GP (1996) Bacopa monniera Linn. as an antioxidant: Mechanism of action. Indian J Exp Biol 34(6): 523–526PubMedGoogle Scholar
  192. 189.
    Vohora D, Pal SN, Pillai KK (2000) Protection from phenytoin-induced cognitive deficit by Bacopa monniera, a reputed Indian nootropic plant. J Ethnopharmacol 71(3): 383–390PubMedCrossRefGoogle Scholar
  193. 190.
    Das A, Shanker G, Nath C, Pal R, Singh S, Singh H (2002) A comparative study in rodents of standardized extracts of Bacopa monniera and Ginkgo biloba: anticholinesterase and cognitive enhancing activities. Pharmacol Biochem Behav 73(4): 893–900PubMedCrossRefGoogle Scholar
  194. 191.
    Sairam K, Dorababu M, Goel RK, Bhattacharya SK (2002) Antidepressant activity of standardized extract of Bacopa monniera in experimental models of depression in rats. Phytomedicine 9(3): 207–211PubMedCrossRefGoogle Scholar
  195. 192.
    Stough C, Lloyd J, Clarke J, Downey LA, Hutchison CW, Rodgers T, Nathan PJ (2001) The chronic effects of an extract of Bacopa monniera (Brahmi) on cognitive function in healthy human subjects. Psychopharmacology 156(4): 481–484PubMedCrossRefGoogle Scholar
  196. 193.
    Mehta A, Mason PJ, Vulliamy TJ (2000) Glucose-6-phosphate dehydrogenase deficiency. Baillieres Best Pract Res Clin Haematol 13(1): 21–38PubMedCrossRefGoogle Scholar
  197. 194.
    Rabey JM, Vered Y, Shabtai H, Graff E, Korczyn AD (1992) Improvement of parkinsonian features correlate with high plasma levodopa values after broad bean (Vicia faba) consumption. J Neurol Neurosurg Psychiatry 55(8): 725–727PubMedCrossRefGoogle Scholar
  198. 195.
    Apaydin H, Ertan S, Ozekmekci S (2000) Broad bean (Vicia faba)—a natural source of L-dopaprolongs “on” periods in patients with Parkinson’s disease who have “on-off” fluctuations. Mov Disord 15(1): 164–166PubMedCrossRefGoogle Scholar
  199. 196.
    Bhattacharya SK, Satyan KS, Ghosal S (1997) Antioxidant activity of glycowithanolides from withania somnifera. Indian J Exp Biol 35(3): 236–239PubMedGoogle Scholar
  200. 197.
    Bhattacharya SK, Bhattacharya A, Sairam K, Ghosal S (2000) Anxiolytic-antidepressant activity of Withania somnifera glycowithanolides: an experimental study. Phytomedicine 7(6): 463–469PubMedCrossRefGoogle Scholar
  201. 198.
    Archana R and Namisivayam A (1999) Antistressor effects of Withania somnifera. J Ethnopharmacol 64 (1): 91–93PubMedCrossRefGoogle Scholar
  202. 199.
    Abdel-Magied EM, Abdel-Rahman HA, Harraz FM (2001) The effect of aqueous extracts of Cynomorium coccineum and Withania somnifera on testicular development in immature Wistar rats. J Ethnopharmacol 75(1): 1–4PubMedCrossRefGoogle Scholar
  203. 200.
    Nalina K, Karanth KS, Rao A, Aroor AR (1995) Effects of Celastrus paniculatus on passive avoidance performance and biogenic amine turnover in white rats. J Ethnopharmacology 47: 101–108CrossRefGoogle Scholar
  204. 201.
    Bidwai PP, Wangoo D, Bhullar N (1990) Antispermatogenic action of Celastrus paniculatus seed extract in the rat with reversible changes in the liver. J Ethnopharmacol 28(3): 293–303PubMedCrossRefGoogle Scholar
  205. 202.
    Gattu M, Boss K, Terry A, Buccafusco J (1997) Reversal of scopolamine-induced deficits in navigational memory performance by the seed oil of Celastrus paniculatus. Pharmacology Biochemistry and Behavior 57(4): 793–799CrossRefGoogle Scholar
  206. 203.
    Kumar MH, Gupta YK (2002) Antioxidant property of Celastrus paniculatus wind: a possible mechanism in enhancing cognition. Phytomedicine 9: 302–311PubMedCrossRefGoogle Scholar
  207. 204.
    Chung YK, Heo HJ, Kim EK, Kim HK, Huh TL, Lim YH, Kim SK, Shin DH (2001) Inhibitory effect of ursolic acid purified from Origanum majorana L. on the acetylcholinesterase. Mol Cells 11: 137–143PubMedGoogle Scholar
  208. 205.
    Heo HJ, Cho HY, Hong B, Kim HK, Heo TR, Kim EK, Kim SK, Kim CJ, Shin DH (2002) Ursolic acid of Origanum majorana L. reduces Abeta-induced oxidative injury. Mol Cells 13(1): 5–11PubMedGoogle Scholar
  209. 206.
    Liu J, Atamna H, Kuratsune H, Ames BN (2002a) Delaying brain mitochondrial decay and aging with mitochondrial antioxidants and metabolites. Ann N Y Acad Sci 959: 133–166CrossRefGoogle Scholar
  210. 207.
    Deneke SM (2000) Thiol-based antioxidants. Curr Top Cell Regul 36: 151–180PubMedCrossRefGoogle Scholar
  211. 208.
    Cantuti-Castelvetri I, Shukitt-Hale B, Joseph JA (2000) Neurobehavioral aspects of antioxidants in aging. Int J Dev Neurosci 18(4–5): 367–381PubMedCrossRefGoogle Scholar
  212. 209.
    Halat KM, Dennehy CE (2003) Botanicals and dietary supplements in diabetic peripheral neuropathy. J Am Board Fam Pract 16(1): 47–57PubMedCrossRefGoogle Scholar
  213. 210.
    Fan SA, Poon HF, Dogrukol-Ak D, Drake J, Banks WA, Eyerman E, Butterfield DA, Morley JE (2003) The antioxidants alpha-lipoic acid and N-acetylcysteine reverse memory impairment and brain oxidative stress in aged SAMP8 mice. J Neurochem 84 (5): 1173–1183CrossRefGoogle Scholar
  214. 211.
    Stoll S, Hartmann H, Cohen SA, Muller WE (1993) The potent free radical scavenger alphalipoic acid improves memory in aged mice: Putative relationship to NMDA receptor deficits. Pharmacol Biochem Behav 46(4): 799–805PubMedCrossRefGoogle Scholar
  215. 212.
    Liu J, Head E, Gharib AM, Yuan W, Ingersoll RT, Hagen TM, Cotman CW, Ames BN (2002b) Memory loss in old rats is associated with brain mitochondrial decay and RNA/DNA oxidation: Partial reversal by feeding acetyl-L-carnitine and/or R-alpha-lipoic acid. Proc Natl Acad Sci USA 99 (10): 7184–7185Google Scholar

Copyright information

© Springer Basel AG 2004

Authors and Affiliations

  • Keith A. Wesnes
    • 1
    • 2
  • Andrea Zangara
    • 1
    • 2
  • Andrew Scholey
    • 1
  • David Kennedy
    • 1
  1. 1.Human Cognitive Neuroscience UnitNorthumbria UniversityNewcastle-upon-TyneUK
  2. 2.Cognitive Drug Research LtdReadingUK

Personalised recommendations