Skip to main content

Linear Complexity and k-Error Linear Complexity for p n -Periodic Sequences

  • Conference paper
Coding, Cryptography and Combinatorics

Part of the book series: Progress in Computer Science and Applied Logic ((PCS,volume 23))

Abstract

The k-error linear complexity of an N-periodic sequence with terms in the finite field \({\mathbb{F}_q}\) is defined to be the smallest linear complexity that can be obtained by changing k or fewer terms of the sequence per period. For the case that N = pfl p is an odd prime,and q is a primitive root modulo p2, we show a relationship between the linear complexity and the minimum value of k for which the k-error linear complexity is strictly less than the linear complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. von zur Gathen and J. Gerhard Modern Computer Algebra. Cambridge University Press, Cambridge, 1999.

    MATH  Google Scholar 

  2. D. Jungnickel Finite Fields: Structure and Arithmetics. Bibliographisches Institut, Mannheim, 1993.

    Google Scholar 

  3. K. Kurosawa, F. Sato, T. Sakata and W. Kishimoto, A relationship between linear complexity and k-error linear complexity. IEEE Trans. Inform. Theory 46 (2000), 694–698.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Lidl and H. Niederreiter Finite Fields. Reading, MA: Addison-Wesley,1983.

    Google Scholar 

  5. J.H. van Lint Introduction to coding theory. 3rd Edition, Graduate texts in Mathematics, 86. Springer-Verlag, Berlin, 1999.

    Book  Google Scholar 

  6. W. Meidl How many bits have to be changed to decrease the linear complexity? Des. Codes Cryptogr., to appear.

    Google Scholar 

  7. W. Meidl and H. Niederreiter Linear complexity k-error linear complexity and the discrete Fourier transform. J. Complexity 18 (2002), 87–103.

    Article  MathSciNet  MATH  Google Scholar 

  8. W. Meidl and H. Niederreiter Periodic sequences with maximal linear complexity and large k-error linear complexity. AAECC 14 (2003), 273–286.

    Article  MathSciNet  MATH  Google Scholar 

  9. H. Niederreiter Some computable complexity measures for binary sequences. Sequences and Their Applications (C. Ding, T. Helleseth and H. Niederreiter, Eds.),67–78, Springer, London, 1999.

    Chapter  Google Scholar 

  10. K.H Rosen Elementary Number Theory and its Applications. Reading, MA: Addison-Wesley, 1988.

    Google Scholar 

  11. R.A. Rueppel Analysis and Design of Stream Ciphers Springer, Berlin, 1986.

    Book  MATH  Google Scholar 

  12. R.A. Rueppel Stream ciphers. Contemporary Cryptology: The Science of Information Integrity (G.J. Simmons, Ed.), 65–134, IEEE Press, New York, 1992.

    Google Scholar 

  13. D. Shanks Solved and Unsolved Problems in Number Theory. 2nd Edition, Chelsea Publishing Company, New York, 1978.

    MATH  Google Scholar 

  14. M. Stamp and C. F. Martin An algorithm for the k-error linear complexity of binary sequences with period 2’. IEEE Trans. Inform. Theory 39 (1993), 1398–1401.

    Article  MathSciNet  MATH  Google Scholar 

  15. H.C.A. van Tilborg, An Introduction to Cryptology. Kluwer Acad. Publ., Boston, 1988.

    Google Scholar 

  16. S. Wei, G. Xiao and Z. Chen, An Efficient Algorithm for k-Error Linear Complexity. Chinese Journal of Electronics 11(2) (2002), 265–267.

    Google Scholar 

  17. G. Xiao, S. Wei, K.Y. Lam and K. Imamura, A fast algorithm for determining the linear complexity of a sequence with period pfl over GF(q). IEEE Trans. Inform. Theory 46 (2000), 2203–2206.

    Google Scholar 

  18. G. Xiao, S. Wei Fast algorithms for determining the linear complexity of period sequences. Progress in Cryptology — INDOCRYPT 2002 (A. Menezes and P. Sarkar, Eds.), Lecture Notes in Computer Science 2551, 12–21, Springer-Verlag, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this paper

Cite this paper

Meidl, W. (2004). Linear Complexity and k-Error Linear Complexity for p n -Periodic Sequences. In: Feng, K., Niederreiter, H., Xing, C. (eds) Coding, Cryptography and Combinatorics. Progress in Computer Science and Applied Logic, vol 23. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7865-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7865-4_15

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9602-3

  • Online ISBN: 978-3-0348-7865-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics