Skip to main content

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

TGF-β superfamily of proteins consists of conserved families of signaling molecules. One of the largest of these multifunctional families is that of the bone morphogenetic proteins (BMPs), with more than 20 members identified in organisms ranging from sea urchin to mammals. BMPs were first named by the ability to induce ectopic cartilage and endochondral bone when implanted in experimental animals [1]. It is now clear that the name is misleading because there is strong evidence that these molecules regulate biological processes as diverse as cell proliferation, apoptosis, differentiation, cell fate determination and morphogenesis [2]. Besides skeleton, BMPs play a role in the development of other organ and tissue systems that form via mesenchymal-epithelial interactions and possibly function to deliver or interpret positional information in a wide variety of organisms [3, 4] (see the chapter by SimicNukicevic).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM, Wang EA (1988) Novel regulators of bone formation: molecular clones and activities. Science 242: 1528–1534

    Article  CAS  Google Scholar 

  2. Hogan BLM (1996) Bone morphogenetic proteins-multifunctional regulators of verte-brate development Gen Develop 10: 1580–1594

    Article  CAS  Google Scholar 

  3. Hogan BLM (1996) Bone morphogenetic proteins in development. Curr Opin Gen Dev 6: 432–438

    Article  CAS  Google Scholar 

  4. Reddi AH (2000) Bone morphogenetic proteins and skeletal development: the kidney-bone connection. Pediatr Nephrol 14: 598–601

    Article  CAS  Google Scholar 

  5. Rueger DC (2002) Biochemistry of bone morphogenetic proteins. In: S Vukicevic, KT Sampath (eds): Bone morphogenetic proteins. From laboratory to clinical practice. Birkhauser Verlag, Basel, 289–321

    Google Scholar 

  6. Zhao GQ (2003) Consequences of knocking out BMP signalling in the mouse. Genesis 35: 43–56

    Article  CAS  Google Scholar 

  7. Padget RW, St Johnston RD, Gelbart WM (1987) A transcript from a Drosophila pattern geen predicts a protein homologous to the transforming growth factor-β family. Nature (London) 325: 81–84

    Article  Google Scholar 

  8. Sampath TK, Rashka EK, Doctor JS, Tucker RF, Hoffmann FM (1993) Drosophila transforming growth factor superfamily proteins induce endochondral bone formation in mammals. Proc Natl Acad Sci USA 90: 6004–6008

    Article  CAS  Google Scholar 

  9. Padget RW, Wozney JM, Gelbart WM (1993) Human BMP sequences can confer normal dorsal-ventral patterning in the Drosophila embryo. Proc Natl Acad Sci USA 90: 2905–2909

    Article  Google Scholar 

  10. Weeks DL, Melton DA (1987) A maternal mRNA localized to the vegetal hemisphere in Xenopus eggs codes for a growth factor related to TGF-β. Cell 51: 861–867

    Article  CAS  Google Scholar 

  11. Ozkaynak E, Schnegelsberg PN, Jin DF, Clifford GM, Warren FD, Drier EA, Oppermann H (1992) Osteogenic protein-2. A new member of the transforming growth factor-beta superfamily expressed early in embryogenesis. J Biol Chem 267: 25220–25227

    CAS  Google Scholar 

  12. Wharton KA, Thomsen GH, Gelbart WM (1991) Drosophila 60A gene, another transforming growth factor 13 family member, is closely related to human bone morphogenetic proteins. Proc Natl Acad Sci USA 88: 9214–9218

    Article  CAS  Google Scholar 

  13. Doctor JS, Jackson PD, Rashka KE, Visalli M, Hoffmann FM (1992) Sequence, biochemical caracterization and developmental expression of a new member of the TGF-β superfamily in Drosophila melanogaster. Dev Biol 151: 491–505

    CAS  Google Scholar 

  14. Feng JQ, Harris MA, Ghosh-Choudhury N, Feng M, Mundy GR, Harris SE (1994) Structure and sequence of mouse bone morphogenetic protein-2 gene (BMP-2): comparison of the structures and promoter regions of BMP-2 and BMP-4 genes. Biochim Biophys Acta 1218: 221–224

    Article  CAS  Google Scholar 

  15. Ozkaynak E, Rueger DC, Drier EA, Corbett C, Ridge RJ, Sampath TK, Oppermann H (1990) OP-1 cDNA encodes an osteogenic protein in the TGF-beta family. EMBO J 9: 2085–2093

    CAS  Google Scholar 

  16. Dickinson ME, Kobrin MS, Silan CM, Kingsley DM, Justice MJ, Miller DA, Ceci JD, Lock LF, Lee A, Buchberg AM et al (1990) Chromosomal localization of seven members of the murine TGF-13 superfamily suggest close linkage to several morphogenetic mutant loci. Genomics 6: 505–520

    Article  CAS  Google Scholar 

  17. Ceci JD, Kingsley DM, Silan CM, Copeland NG, Jenkins NA (1990) An interspecific backcross linkage map of the proximal half of mouse chromosome 14. Genomics 87: 9843–9847

    Google Scholar 

  18. Vukicevic S, Helder MN, Luyten FP (1994) Developing human lung and kidney are major sites for synthesis of bone morphogenetic protein-3 (osteogenin). J Histochem Cytochem 42: 869–875

    Article  CAS  Google Scholar 

  19. Vukicevic S, Kopp JB, Luyten FP, Sampath TK (1996) Induction of nephrogenic mesenchyme by osteogenic protein 1 (bone morphogenetic protein 7). Proc Natl Acad Sci USA 93: 9021–9026

    Article  CAS  Google Scholar 

  20. Helder MN, Ozkaynak E, Sampath KT, Luyten FP, Latin V, Oppermann H, Vukicevic S (1995) Expression pattern of osteogenic protein-1 (bone morphogenetic protein-7) in human and mouse development. J Histochem Cytochem 43: 1035–1044

    Article  CAS  Google Scholar 

  21. Ducy P, Karsenty G (2000) The family of bone morphogenetic proteins. Kidney Int 57: 2207–2214

    Article  CAS  Google Scholar 

  22. Dudley AT, Lyons K, Robertson EJ (1995) A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev 9: 2795–2807

    Article  CAS  Google Scholar 

  23. Luo G, Hofmann C, Bronckers AL, Sohocki M, Bradley A, Karsenty G (1995) BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning. Genes Dev 9: 2808–2820

    Article  CAS  Google Scholar 

  24. Letterio JJ, Geiser AG, Kulkarni AB, Roche NS, Sporn MB, Roberts AB (1994) Maternal rescue of transforming growth factor-β1 null mice. Science 264: 1936–1938

    Article  CAS  Google Scholar 

  25. Borovecki F, Grgurevic L, Jelic M, Bosukonda D, Sampath K, Vukicevic S (2004) Snjezana Martinovic et at Osteogenic protein-1 (bone morphogenetic protein-7) is available to the fetus through placental transfer during early stages of development. Nephron Exp Nephrol 97: 26–32

    Article  CAS  Google Scholar 

  26. Hongbin Z, Bradley A (1996) Mice deficient for BMP-2 are nonviable and have defects in amnion/chorion and cardiac development. Development 122: 2977–2986

    Google Scholar 

  27. Lyons KM, Pelton RW, Hogan BLM (1990) Organogenesis and pattern formation in the mouse: RNA distribution patterns suggest a role for bone morphogenetic protein-2A (BMP-2A). Development 109: 833–844

    CAS  Google Scholar 

  28. Clement JH, Fettes P, Knochel S, Lef J, Knochel W (1995) Bone morphogenetic protein 2 in early development of Xenopus laevis. Mech Dev 52: 357–370

    Article  CAS  Google Scholar 

  29. Tabas JA, Zasloff M, Wasmuth JJ, Emanuel BS, Altherr MR, McPherson JD, Wozney JM, Kaplan FS (1991) Bone morphogenetic protein: chromosomal localization of human genes for BMP1, BMP2A, and BMP3. Genomics 9: 283–289

    Article  CAS  Google Scholar 

  30. Rao VV, Loffler C, Wozney JM, Hansmann I (1992) The gene for bone morphogenetic protein 2A (BMP2A) is localized to human chromosome 20p12 by radioactive and nonradioactive in situ hybridization. Hum Genet 90: 299–302

    Article  CAS  Google Scholar 

  31. Luyten FP, Cunningham NS, Ma S, Muthukumaran N, Hammonds RG, Nevins WB, Woods WI, Reddi AH (1989) Purification and partial amino acid sequence of osteogenin, a protein initiating bone differentiation. J Biol Chem 264: 13377–13380

    CAS  Google Scholar 

  32. Vukicevic S, Helder MN, Luyten FP (1994b) Developing human lung and kidney are major sites for synthesis of bone morphogenetic protein-3 (osteogenin). J Histochem Cytochem 42: 869–875

    Article  CAS  Google Scholar 

  33. Daluiski A, Engstrand T, Bahamonde ME, Gamer LW, Agius E, Stevenson SL, Cox K, Rosen V, Lyons KM (2001) Bone morphogenetic protein-3 is a negative regulator of bone density. Nat Genet 27: 84–88

    CAS  Google Scholar 

  34. Aspenberg P, Basic N, Tagil M, Vukicevic S (2000) Reduced expression of BMP-3 due to mechanical loading: a link between mechanical stimuli and tissue differentiation. Acta Orthop Scand 71: 558–562

    CAS  Google Scholar 

  35. Winnier G, Blessing M, Labosky PA, Hogan BLM (1995) Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Gen Dev 9: 2105–2116

    Article  CAS  Google Scholar 

  36. Lawson KA, Pedersen RA (1992) Clonal analysis of cell fate during gastrulation and early neurulation in the mouse. Postimplantation development in the mouse. CIBA Found 165: 3–26

    CAS  Google Scholar 

  37. Duprez D, Bell EJ, Richardson MK, Archer CW, Wolpert L, Bricker PM, Francis-West PH (1996) Overexpression of BMP-2 and BMP-4 alters the size and shape of developing skeletal elements in the chick limb. Mech Dev 57: 145–157

    Article  CAS  Google Scholar 

  38. Shafritz AB, Shore EM, Gannon FH, Zasloff MA, Taub R, Muenke M, Kaplan FS (1996) Overexpression of an osteogenic morphogen in fybrodysplasia ossificans progressiva. N Engl J Med 335: 555–561

    Article  CAS  Google Scholar 

  39. Martinovic S, Mazic S, Kisic V, Basic N, Jakic-Razumovic J, Batinic D, Borovecki F, Simic P, Grgurevic L, Labar B, Vukicevic S (2004) Expression of bone morphogenetic proteins in long-term culture of human bone marrow stromal cells. J Histoch Cytochem 52 Biology of bone morphogenetic proteins

    Google Scholar 

  40. Katoh M, Terada M (1996) Overexpression of bone morphogenetic protein (BMP)-4 mRNA in gastric cancer cel lines of poorly differentiated type. J Gastroenterol 31: 137–139

    Article  CAS  Google Scholar 

  41. Kusafuka K, Yamaguchi A, Kayano T, Fujiwara M, Takemura T (1998) Expression of bone morphogenetic proteins in salivary pleomorphic adenomas. Virchows Arch 432: 247–253

    Article  CAS  Google Scholar 

  42. King JA, Marker PC, Seung KJ, Kingsley DM (1994) BMP5 and the molecular, skeletal, and soft-tissue alterations in short ear mice. Dev Biol 166: 112–122

    Article  CAS  Google Scholar 

  43. Green MC (1968) Mechanism of the pleiotropic effects of the short-ear mutant gene in the mouse. J Exp Zool 167: 129–150

    Article  CAS  Google Scholar 

  44. Kingsley DM, Bland AE, Grubber JM, Marker PC, Russell LB, Copeland NG, Jenkins NA (1992) The mouse short ear skeletal morphogenesis locus is associated with defects in a bone morphogenetic member of the TGFI superfamily. Cell 71: 399–410

    Article  CAS  Google Scholar 

  45. Hahn GV, Cohen RB, Wozney JM, Levitz CL, Shore EM, Zasloff MA, Kaplan FS (1992) A bone morphogenetic protein subfamily: chromosomal localization of human genes for BMP5, BMP6, and BMP7. Genomics 14: 759–762

    Article  CAS  Google Scholar 

  46. Solloway MJ, Dudley AT, Bikoff EK, Lyons KM, Hogan BL, Robertson EJ (1998) Mice lacking Bmp6 function. Dev Genet 22: 321–339

    Article  CAS  Google Scholar 

  47. Blessing M, Schrimacher P, Kaiser S (1996) Overexpression of bone morphogenetic protein-6 (BMP-6) in the epidermis of transgenic mice: inhibition or stimulation of proliferation depending on the pattern of transgene expression and formation of psoriatic lesions. J Cell Biol 135: 227–239

    Article  CAS  Google Scholar 

  48. Dichmann DS, Miller CP, Jensen J, Heller RS, Serup P (2003) Expression and misexpression of members of the FGF and TGFI3 families of growth factors in the developing mouse pancreas. Dev Dyn 226: 663–674

    CAS  Google Scholar 

  49. Perr HA, Ye J-Q, Gitelman SE (1999) Smooth muscle expresses bone morphogenetic protein (Vgr-1/BMP-6) in human fetal intestine. Biol Neonate 75: 210–214

    Article  CAS  Google Scholar 

  50. Zhao GQ, Deng K, Labosky PA, Liaw L, Hogan BL (1996) The gene encoding bone morphogenetic protein 8B is required for the initiation and maintenance of spermatogenesis in the mouse. Genes Dev 10: 1657–1669

    Article  CAS  Google Scholar 

  51. Zhao GQ, Liaw L, Hogan BL (1998) Bone morphogenetic protein 8A plays a role in the maintenance of spermatogenesis and the integrity of the epididymis. Development 125: 1103–1112

    CAS  Google Scholar 

  52. Chen C, Grzegorzewski KJ, Barash S, Zhao Q, Schneider H, Wang Q, Singh M, Pukac L, Bell AC, Duan R et al (2003) An integrated functional genomics screening program reveals a role for BMP-9 in glucose homeostasis. Nat Biotechnol 21: 294–301

    Article  CAS  Google Scholar 

  53. Rankin CT, Bunton T, Lawler AM, Lee SJ (2000) Regulation of left-right patterning in mice by growth/differentiation factor-1. Nat Genet 24: 262–265

    Article  CAS  Google Scholar 

  54. Storm EE, Huynh TV, Copeland NG, Jenkins NA, Kingsley DM, Lee SJ (1994) Limb alterations in brachypodism mice due to mutations in a new member of the TGFP-superfamily. Nature 368: 639–643

    Article  CAS  Google Scholar 

  55. Storm EE, Kingsley DM (1996) Joint patterning defects caused by single and double mutations in members of the bone morphogenetic protein (BMP) family. Development 122: 3969–3979

    CAS  Google Scholar 

  56. Francis-West PH, Abdelfattah A, Chen P, Allen C, Parish J, Ladher R, Allen S, MacPherson S, Luyten FP, Archer CW (1999) Mechanisms of GDF-S action during skeletal development. Development 126: 1305–1315

    CAS  Google Scholar 

  57. Francis-West PH, Parish J, Lee K, Archer CW (1999) BMP/GDF-signalling interactions during synovial joint development. Cell Tissue Res 296: 111–119

    Article  CAS  Google Scholar 

  58. Chang SC, Hoang B, Thomas JT, Vukicevic S, Luyten FP, Ryba NJ, Kozak CA, Reddi AH, Moos M Jr (1994) Cartilage-derived morphogenetic proteins. New members of the transforming growth factor-beta superfamily predominantly expressed in long bones during human embryonic development. J Biol Chem 269: 28227–28234

    CAS  Google Scholar 

  59. Thomas JT, Lin K, Nandedkar M, Camargo M, Cervenka J, Luyten FP (1996) A human chondrodysplasia due to a mutation in a TGF-I3 superfamily member. Nat Gen 12: 315–318

    Article  CAS  Google Scholar 

  60. Thomas JT, Kilpatrick MW, Lin K, Erlacher L, Lembessis P, Costa T, Tsipouras P, Luyten FP (1997) Disruption of human limb morphogenesis by a dominant negative mutation in CDMP1. Nat Genet 17: 58–64

    Article  CAS  Google Scholar 

  61. Wolfman NM, Hattersley G, Cox K, Celeste AJ, Nelson R, Yamaji N, Dube JL, DiBlasio-Smith E, Nove J, Song JJ et al (1997) Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5,6 and 7, members of the TGF-beta gene family. J Clin Invest 100: 321–330

    Article  CAS  Google Scholar 

  62. Lee KJ, Mendelsohn M, Jessell TM (1998) Neuronal patterning by BMPs: a requirement fir GDF7 in the generation of a discrete class of commissural interneurons in the mouse spinal cord. Genes Dev 12: 3394–3407

    Article  CAS  Google Scholar 

  63. McPherron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387: 83–90

    Article  CAS  Google Scholar 

  64. Elvin JA, Changning Y, Wang P, Nishimori K, Matzuk MM (1999) Molecular characterization of the follicle defects in the growth differentiation factor 9-deficient ovary. Mol Endocrin 6: 1018–1035

    Article  Google Scholar 

  65. Elvin JA, Yan C, Matzuk MM (2000) Oocyte-expressed TGF-13 superfamily members in female fertility. Mol Cell Endocrin 159: 1–5

    Article  CAS  Google Scholar 

  66. Zhao R, Lawler AM, Lee SJ (1999) Characterization of GDF-10 expression patterns and null mice. Dev Biol 212: 68–79

    Article  CAS  Google Scholar 

  67. McPherron AC, Lawler AM, Lee SJ (1999) Regulation of anterior/posterior patterning of the axial skeleton by growth/differentiation factor 11. Nat Genet 22: 260–264

    Article  CAS  Google Scholar 

  68. Ying Y, Zhao GQ (2001) Cooperation of endoderm-derived BMP2 and extraembryonic ectoderm-derived BMP4 in primordial germ cell generation in the mouse. Dev Biol 232: 484–492

    Article  CAS  Google Scholar 

  69. Katagiri T, Boorla S, Frendo JL, Hogan BL, Karsenty G (1998) Skeletal abnormalities in doubly heterozygous Bmp4 and BMP7 mice. Dev Genet 22: 340–348

    Article  CAS  Google Scholar 

  70. Solloway MJ, Robertson EJ (1999) Early embryonic lethality in BmpS;Bmp7 double mutant mice suggests functional redundancy within the 60A subgroup. Development 126: 1753–1768

    CAS  Google Scholar 

  71. Kim RY, Robertson EJ, Solloway MJ (2001) Bmp6 and Bmp7 are required for cushion formation and septation in the developing mouse heart. Dev Biol 235:449–466

    Article  CAS  Google Scholar 

  72. Zhao GQ, Liaw L, Hogan BL (1998) Bone morphogenetic protein 8A plays a role in the maintenance of spermatogenesis and the integrity of the epididymis. Development 125: 1103–1112

    CAS  Google Scholar 

  73. Zhao GQ, Chen YX, Liu XM, Xu Z, Qi X (2001) Mutation in Bmp7 exacerbates the phenotype of Bmp8a mutants in spermatogenesis and epididymis. Dev Biol 240: 212–222

    Article  CAS  Google Scholar 

  74. Smith WC, Harland RM (1992) Expression cloning of Noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 70: 829–840

    Article  CAS  Google Scholar 

  75. Reddi AH (2001) Interplay between bone morphogenetic proteins and cognate binding proteins in bone and cartilage development: noggin, chordin and DAN. Arthritis Res 3: 1–5

    Article  CAS  Google Scholar 

  76. Gazzerro E, Gangji V. Canalis E (1998) Bone morphogenetic proteins induce the expression of Noggin, which limits their activity in cultured rat osteoblast. J Clin Invest 102: 2106–2114

    Article  CAS  Google Scholar 

  77. Abe E, Yamamoto M, Taguchi Y, Lecka-Czernik B, O’Brien CA, Economides AN, Stahl N, Jilka RL, Manolagas SC (2000) Essential requirement of BMPs-2/4 for both osteoblast and osteoclast formation in murine bone marrow cultures from adult mice: antagonism by Noggin. J Bone Miner Res 5: 663–673

    Google Scholar 

  78. Brunet LJ, McMahon JA, McMahon AP, Harland RM. (1998) Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science 280: 1455–1457

    Article  CAS  Google Scholar 

  79. Piccolo S, Sasai Y, Lu B, De Robertis EM (1996) Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86: 589–598

    Article  CAS  Google Scholar 

  80. Wardle FC, Welch JV, Dale L (1999) Bone morphogenetic protein 1 regulates dorsal-ventral patterning in early Xenopus embryos by degrading Chordin, a BMP-4 antagonist. Mech Dev 86: 75–85

    Article  CAS  Google Scholar 

  81. Bachiller D, Klingensmith J, Shneyder N, Tran U, Anderson R, Rossant J, De Robertis EM (2003) The role of chordin/Bmp signals in mammalian pharyngeal development and DiGeorge syndrome. Development. 130: 3567–3378

    Article  CAS  Google Scholar 

  82. Sakuta H, Suzuki R, Takahashi H, Kato A, Shintani T, Iemura Si, Yamamoto TS, Ueno N, Noda M (2001) Ventroptin: a BMP-4 antagonist expressed in a double-gradient pattern in the retina. Science 293: 111–115

    Article  CAS  Google Scholar 

  83. Chimal-Monroy J, Rodriguez-Leon J, Montero JA, Ganan Y, Macias D, Merino R, Hurle JM (2003) Analysis of the molecular cascade responsible for mesodermal limb chondrogenesis: Sox genes and BMP signaling. Dev Biol 257: 292–301

    Article  CAS  Google Scholar 

  84. Guo Q, Kumar TR, Woodruff T, Hadsell LA, DeMayo FJ, Matzuk MM (1998) Over-expression of mouse follistatin causes reproductive defects in transgenic mice. Mol Endocrinol 12: 96–106

    CAS  Google Scholar 

  85. Hayette S, Gadoux M, Martel S, Bertrand S, Tigaud I, Magaud JP, Rimokh R (1998) FLRG (follistatin-related gene), a new target of chromosomal rearrangement in malignant blood disorders. Oncogene 16: 2949–2954

    Article  CAS  Google Scholar 

  86. Tsuchida K, Arai KY, Kuramoto Y, Yamakawa N, Hasegawa Y, Sugino H (2000) Identification and characterization of a novel follistatin-like protein as a binding protein for the TGF-beta family. J Biol Chem 275: 40788–40796

    Article  CAS  Google Scholar 

  87. Kim AS, Pleasure SJ (2003) Expression of the BMP antagonist Dan during murine forebrain development. Brain Res Dev Brain Res 145: 159–162

    Article  CAS  Google Scholar 

  88. Nakamura Y, Ozaki T, Nakagawara A, Sakiyama S (1997) A product of DAN, a novel candidate tumour suppressor gene, is secreted into culture medium and suppresses DNA synthesis. Eur J Cancer 33: 1986–1990

    Article  CAS  Google Scholar 

  89. Gerlach-Bank LM, Cleveland AR, Barald KF (2004) DAN directs endolymphatic sac and duct outgrowth in the avian inner ear. Dev Dyn 229: 219–230

    CAS  Google Scholar 

  90. Picollo S, Agius E, Leyns L, Bhattacharyya S, Grunz H, Bouwmeester T, De Robertis EM (1999) The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature 397: 707–710

    Article  Google Scholar 

  91. Silva AC, Filipe M, Kuerner KM, Steinbeisser H, Belo JA (2003) Endogenous Cerberus activity is required for anterior head specification in Xenopus. Development 130: 4943–4953

    Article  CAS  Google Scholar 

  92. Belo JA, Bachiller D, Agius E, Kemp C, Borges AC, Marques S, Piccolo S, De Robertis EM (2000) Cerberus-like is a secreted BMP and nodal antagonist not essential for mouse development. Genesis 26: 265–270

    Article  CAS  Google Scholar 

  93. Bell E, Munoz-Sanjuan I, Altmann CR, Vonica A, Brivanlou AH (2003) Cell fate specification and competence by Coco, a maternal BMP, TGFbeta and Wnt inhibitor. Development 130: 1381–1389

    Article  CAS  Google Scholar 

  94. Hsu DR, Economides AN, Wang X, Eimon PM, Harland RM (1998) The Xenopus dorsalizing factor Gremlin identifies a novel family of secreted proteins that antagonize BMP activities. Mol Cell 1: 673–683

    Article  CAS  Google Scholar 

  95. Khokha MK, Hsu D, Brunet LJ, Dionne MS, Harland RM (2003) Gremlin is the BMP antagonist required for maintenance of Shh and Fgf signals during limb patterning. Nat Genet 34: 303–307

    Article  CAS  Google Scholar 

  96. Shi W, Zhao J, Anderson KD, Warburton D (2001) Gremlin negatively modulates BMP4 induction of embryonic mouse lung branching morphogenesis. Am J Physiol Lung Cell Mol Physiol 280: 1030–1039

    Google Scholar 

  97. Murphy M, McMahon R, Lappin DW, Brady HR (2002) Gremlins: is this what renal fibrogenesis has come to? Exp Nephrol 10: 241–244

    Article  CAS  Google Scholar 

  98. Sudo S, Avsian-Kretchmer 0, Wang LS, Hsueh AJ (2004) Protein related to DAN and cerberus (PRDC) is a BMP antagonist that participates in ovarian paracrine regulation. J Biol Chem 279: 23134–23141

    Article  CAS  Google Scholar 

  99. Van Bezooijen RL, Roelen BA, Visser A, Van Der Wee-Pals L, De Wilt E, Karperien M, Hamersma H, Papapoulos SE, Ten Dijke P, Lowik CV((2004) Sclerostin is an osteocyteexpressed negative regulator of bone formation, but not a classical BMP antagonist. J Exp Med 199: 805–814

    Article  CAS  Google Scholar 

  100. Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, Shpektor D, Jonas M, Kovacevich BR, Staehling-Hampton K et al (2003) Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J 22: 6267–6276

    Article  CAS  Google Scholar 

  101. ten Dijke P, Miyazono K, Heldin CH (1996) Signaling via hetero-olimeric complexes of type I and type II serine/threonine kinase receptors. Curr Opin Cell Biol 8: 139–145

    Article  Google Scholar 

  102. Mishina Y, Suzuki A, Ueno N, Behringer RR (1995) Bmpr encodes a type I bone morphogenetic protein receptor that is essential for gastrulation during mouse embryogenesis. Genes Dev 9: 3027–3037

    Article  CAS  Google Scholar 

  103. Ahn K, Mishina Y, Hanks MC, Behringer RR, Crenshaw EB 3rd (2001) BMPR-IA signaling is required for the formation of the apical ctodermal ridge and dorsal-ventral patterning of the limb. Development 128: 4449–4461

    CAS  Google Scholar 

  104. Gaussin V, Van de Putte T, Mishina Y, Hanks MC, Zwijsen A, Huylebroeck D, Behringer R, Schneider MD (2002) Endocardial cushion and myocardial defects after cardiac myocyte-speci.c conditional deletion of the bone morphogenetic protein receptor ALK3. Proc Natl Acad Sci USA 99: 2878–2883

    Article  CAS  Google Scholar 

  105. Oh SP, Seki T, Goss KA, Imamura T, Yi Y, Donahoe PK, Li L, Miyazono K, ten Dijke P, Kim S, Li E (2000) Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. Proc Natl Acad Sci USA 97: 2626–2631

    Article  CAS  Google Scholar 

  106. Gu Z, Reynolds EM, Song J, Lei H, Feijen A, Yu L, He W, MacLaughlin DT, van den Eijnden-van Raaij J, Donahoe PK, Li E (1999) The type I serine/threonine kinase receptor ActRIA (ALK2) is required for gastrulation of the mouse embryo. Development 126: 2551–2561

    CAS  Google Scholar 

  107. Gu Z, Nomura M, Simpson BB, Lei H, Feijen A, van den Eijnden-van Raaij J, Donahoe PK, Li E. (1998) The type I activin receptor ActRIB is required for egg cylinder organization and gastrulation in the mouse. Genes Dev 12: 844–857

    Article  CAS  Google Scholar 

  108. Yi SE, Daluiski A, Pederson R, Rosen V, Lyons KM (2000) The type I BMP receptor BMPRIB is required for chondrogenesis in the mouse limb. Development 127: 621–630

    CAS  Google Scholar 

  109. Yi SE, LaPolt PS, Yoon BS, Chen JY, Lu JK, Lyons KM (2001) The type I BMP receptor BmprIB is essential for female reproductive function. Proc Natl Acad Sci USA 98: 7994–7999

    Article  CAS  Google Scholar 

  110. Beppu H, Kawabata M, Hamamoto T, Chytil A, Minowa 0, Noda T, Miyazono K (2000) BMP type II receptor is required for gastrulation and early development of mouse embryos. Dev Biol 221: 249–258

    Article  CAS  Google Scholar 

  111. Matzuk MM, Kumar TR, Bradley A (1995) Different phenotypes for mice deficient in either activins or activin receptor type II. Nature 374: 356–360

    Article  CAS  Google Scholar 

  112. Oh SP, Li E (1997) The signaling pathway mediated by the type IIB activin receptor controls axial patterning and lateral asymmetry in the mouse. Genes Dev 11: 1812–1826

    Article  CAS  Google Scholar 

  113. Song J, Oh SP, Schrewe H, Nomura M, Lei H, Okano M, Gridley T, Li E (1999) The type II activin receptors are essential for egg cylinder growth, gastrulation, and rostral head development in mice. Dev Biol 213: 157–169

    Article  CAS  Google Scholar 

  114. Lechleider RJ, Ryan JL, Garrett L, Eng C, Deng C, Wynshaw-Boris A, Roberts AB (2001) Targeted mutagenesis of Smadl reveals an essential role in chorioallantoic fusion. Dev Biol 240: 157–167

    Article  CAS  Google Scholar 

  115. Tremblay KD, Dunn NR, Robertson EJ (2001) Mouse embryos lacking Smad1 signals display defects in extra-embryonic tissues and germ cell formation. Development 128: 3609–3621

    CAS  Google Scholar 

  116. Nomura M, Li E (1998) Smad2 role in mesoderm formation, left-right patterning and craniofacial development. Nature 393: 786–790

    Article  CAS  Google Scholar 

  117. Heyer J, Escalante-Alcalde D, Lia M, Boettinger E, Edelmann W, Stewart CL, Kucherlapati R (1999) Postgastrulation Smad2-de.cient embryos show defects in embryo turning and anterior morphogenesis. Proc Natl Acad Sci USA 96: 12595–12600

    Article  CAS  Google Scholar 

  118. Zhu Y, Richardson JA, Parada LF, Graff JM (1998) Smad3 mutant mice develop metastatic colorectal cancer. Cell 94: 703–714

    Article  CAS  Google Scholar 

  119. Ashcroft GS, Yang X, Glick AB, Weinstein M, Letterio JL, Mizel DE, Anzano M, Greenwell-Wild T, Wahl SM, Deng C, Roberts AB (1999) Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nat Cell Biol 1: 260–266

    Article  CAS  Google Scholar 

  120. Yang X, Letterio JJ, Lechleider RJ, Chen L, Hayman R, Gu H, Roberts AB, Deng C (1999) Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-beta. EMBO J 18: 1280–1291

    Article  CAS  Google Scholar 

  121. Yang X, Chen L, Xu X, Li C, Huang C, Deng CX (2001) TGF-beta/Smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage. J Cell Biol 153: 35–46

    Article  CAS  Google Scholar 

  122. Sirard C, de la Pompa JL, Elia A, Itie A, Mirtsos C, Cheung A, Hahn S, Wakeham A, Schwartz L, Kern SE et al (1998) The tumor suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior development of the mouse embryo. Genes Dev 12: 107–119

    Article  CAS  Google Scholar 

  123. Takaku K, Oshima M, Miyoshi H, Matsui M, Seldin MF, Taketo MM (1998) Intestinal tumorigenesis in compound mutant mice of both Dpc4 (Smad4) and Apc genes. Cell 92: 645–656

    Article  CAS  Google Scholar 

  124. Chang H, Matzuk MM (2001) SmadS is required for mouse primordial germ cell development. Mech Dev 104: 61–67

    Article  CAS  Google Scholar 

  125. Chang H, Huylebroeck D, Verschueren K, Guo Q, Matzuk MM, Zwijsen (1999) SmadS nockout mice die at mid-gestation due to multiple embryonic and extraembryonic Development 126: 1631–1642

    CAS  Google Scholar 

  126. Chang H, Zwijsen A, Vogel H, Huylebroeck D, Matzuk MM (2000) Smad5 is essential for left right asymmetry in mice. Dev Biol 219: 71–78

    Article  CAS  Google Scholar 

  127. Galvin KM, Donovan MJ, Lynch CA, Meyer RI, Paul RJ, Lorenz JN, Fairchild-Huntress V, Dixon KL, Dunmore JH, Gimbrone MA Jr et al (2000) A role for smad6 in development and homeostasis of the cardiovascular system. Nat Genet 24: 171–174

    Article  CAS  Google Scholar 

  128. Dong C, Zhu S, Wang T, Yoon W, Li Z, Alvarez RJ, ten Dijke P, White B, Wigley FM, Goldschmidt-Clermont PJ (2002) Deficient Smad7 expression: a putative molecular defect in scleroderma. Proc Natl Acad Sci USA 99: 3908–3913

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this chapter

Cite this chapter

Martinovic, S., Simic, P., Borovecki, F., Vukicevic, S. (2004). Biology of bone morphogenetic proteins. In: Vukicevic, S., Sampath, K.T. (eds) Bone Morphogenetic Proteins: Regeneration of Bone and Beyond. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7857-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7857-9_3

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9598-9

  • Online ISBN: 978-3-0348-7857-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics