Skip to main content

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

Bone morphogenetic proteins (BMPs) belong to the TGF-β superfamily of growth factors and morphogens. BMPs regulate neurulation, the sequence of morphogenetic events that specify neural tissue. Thereafter, BMPs and the closely related Growth/Differentiation Factors (GDFs) are prominently expressed in the central and peripheral nervous systems as well as in target tissues of sensory and motor neurons. The actions of BMPs and GDFs on neural tissue are both profound and diverse. They have been implicated in crucial developmental events such as: specification of neural and glial cell lineages, neural cell survival and proliferation, dorsal-ventral patterning, segmentation, axonal guidance, determination of neurotransmitter phenotype, regulation of dendritic growth and synapse formation. In addition, BMPs and GDFs are neuroprotective in mature animals in models of stroke and Parkinson’s disease. In a previous article, we surveyed the effects of BMPs and GDFs on neural tissue [1]. In this review, we update summaries of some of the more rapidly advancing research areas. Other recent reviews have examined neural actions of TGF-β [2] and the roles of BMPs and their antagonists in neural induction [3, 4], neural crest development [5] and dorsal-ventral patterning [6, 7]. Therefore, these topics are not considered here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lein P, Drahushak KM, Higgins D (2002) Bone morphogenetic proteins in the nervous system. In: S Vukicevic, KT Sampath (eds): Bone morphogenetic proteins: From laboratory to clinical practice. Birkhauser Verlag, Basel, Sitzerland, 289–319

    Chapter  Google Scholar 

  2. Krieglstein K, Strelau J, Schober A, Sullivan A, Unsicker K (2002) TGF-beta and the reg-ulation of neuron survival and death. J Physiol Paris 96: 25–30

    Article  CAS  Google Scholar 

  3. Munoz-Sanjuan I, Brivanlou AH (2002) Neural induction, the default model and embryonic stem cells. Nat Rev Neurosci 3: 271–280

    Article  CAS  Google Scholar 

  4. Schier AF (2003) Nodal signaling in vertebrate development. Annu Rev Cell Dev Biol 19: 589–621

    Article  CAS  Google Scholar 

  5. Knecht AK, Bronner-Fraser M (2002) Induction of the neural crest: a multigene process. Nat Rev Genet 3: 453–461

    Article  CAS  Google Scholar 

  6. Helms AW, Johnson JE (2003) Specification of dorsal spinal cord interneurons. Curr Opin Neurobiol 13: 42–49

    Article  CAS  Google Scholar 

  7. Jessell TM (2000) Neuronal specification in the spinal cord: inductive signals and tran-scriptional codes. Nat Rev Genet 1: 20–29

    Article  CAS  Google Scholar 

  8. Weiss S, Reynolds BA, Vescovi AL, Morshead C, Craig CG, van der Kooy D (1996) Is there a neural stem cell in the mammalian forebrain? Trends Neurosci 19: 387–393

    Article  CAS  Google Scholar 

  9. McKay R (1997) Stem cells in the central nervous system. Science 276: 66–71

    Article  CAS  Google Scholar 

  10. Edlund T, Jessell TM (1999) Progression from extrinsic to intrinsic signaling in cell fate specification: a view from the nervous system. Cell 96: 211–224

    Article  CAS  Google Scholar 

  11. Panchision DM, McKay RD (2002) The control of neural stem cells by morphogenic signals. Curr Opin Genet Dev 12: 478–487

    Article  CAS  Google Scholar 

  12. Shah NM, Groves AK, Anderson DJ (1996) Alternative neural crest cell fates are instructively promoted by TGFbeta superfamily members. Cell 85: 331–343

    Article  CAS  Google Scholar 

  13. Sela-Donenfeld D, Kalcheim C (1999) Regulation of the onset of neural crest migration by coordinated activity of BMP4 and Noggin in the dorsal neural tube. Development 126: 4749–4762

    CAS  Google Scholar 

  14. Panchision DM, Pickel JM, Studer L, Lee SH, Turner PA, Hazel TG, McKay RD (2001) Sequential actions of BMP receptors control neural precursor cell production and fate. Genes Dev 15: 2094–2110

    Article  CAS  Google Scholar 

  15. Liem KF, Tremml G, Jessell TM (1997) A role for the roof plate and its resident TGFbeta-related proteins in neuronal patterning in the dorsal spinal cord. Cell 91: 127–138

    Article  CAS  Google Scholar 

  16. Graham A, Francis-West P, Brickell P, Lumsden A (1994) The signalling molecule BMP4 mediates apoptosis in the rhombencephalic neural crest. Nature 372: 684–686

    Article  CAS  Google Scholar 

  17. Furuta Y, Piston DW, Hogan BL (1997) Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. Development 124: 2203–2212

    CAS  Google Scholar 

  18. Li W, Cogswell CA, LoTurco JJ (1998) Neuronal differentiation of precursors in the neocortical ventricular zone is triggered by BMP. J Neurosci 18: 8853–8862

    CAS  Google Scholar 

  19. Wu HH, Ivkovic S, Murray RC, Jaramillo S, Lyons KM, Johnson JE, Calof AL (2003) Autoregulation of neurogenesis by GDF11. Neuron 37: 197–207

    Article  CAS  Google Scholar 

  20. Mabie PC, Mehler MF, Kessler JA (1999) Multiple roles of bone morphogenetic protein signaling in the regulation of cortical cell number and phenotype. J Neurosci 19: 7077–7088

    CAS  Google Scholar 

  21. Gross RE, Mehler MF, Mabie PC, Zang Z, Santschi L, Kessler JA (1996) Bone morphogenetic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells. Neuron 17: 595–606

    Article  CAS  Google Scholar 

  22. Molne M, Studer L, Tabar V, Ting YT, Eiden MV, McKay RD (2000) Early cortical precursors do not undergo LIF-mediated astrocytic differentiation. J Neurosci Res 59: 301–311

    Article  CAS  Google Scholar 

  23. Mujtaba T, Mayer-Proschel M, Rao MS (1998) A common neural progenitor for the CNS and PNS. Dev Biol 200: 1–15

    Article  CAS  Google Scholar 

  24. Altmann CR, Brivanlou AH (2001) Neural patterning in the vertebrate embryo. Int Rev Cytol 203: 447–482

    Article  CAS  Google Scholar 

  25. Anderson DJ (2001) Stem cells and pattern formation in the nervous system: the possible versus the actual. Neuron 30: 19–35

    Article  CAS  Google Scholar 

  26. Smith AG (2001) Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol 17: 435–462

    Article  CAS  Google Scholar 

  27. Tropepe V, Hitoshi S, Sirard C, Mak TW, Rossant J, van der Kooy D (2001) Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 30: 65–78

    Article  CAS  Google Scholar 

  28. Gratsch TE, O’Shea KS (2002) Noggin and chordin have distinct activities in promot-ing lineage commitment of mouse embryonic stem (ES) cells. Dev Biol 245: 83–94

    Article  CAS  Google Scholar 

  29. Ying QL, Stavridis M, Griffiths D, Li M, Smith A (2003) Conversion of embryonic stem cells to neuroectodermal precursors in adherent monoculture. Nat Biotechnol 21: 183–186

    Article  CAS  Google Scholar 

  30. Wiles MV, Johansson BM (1999) Embryonic stem cell development in a chemically defined medium. Exp Cell Res 247: 241–248

    Article  CAS  Google Scholar 

  31. Johansson BM, Wiles MV (1995) Evidence for involvement of activin A and bone morphogenetic protein 4 in mammalian mesoderm and hematopoietic development. Mol Cell Biol 15: 141–151

    CAS  Google Scholar 

  32. Ying QL, Nichols J, Chambers I, Smith A (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115: 281–292

    Article  CAS  Google Scholar 

  33. Norton JD, Deed RW, Craggs G, Sablitzky F (1998) Id helix-loop-helix proteins in cell growth and differentiation. Trends Cell Biol 8: 58–65

    CAS  Google Scholar 

  34. Christy BA, Sanders LK, Lau LF, Copeland NG, Jenkins NA, Nathans D (1991) An Id-related helix-loop-helix protein encoded by a growth factor-inducible gene. Proc Natl Acad Sci USA 88: 1815–1819

    Article  CAS  Google Scholar 

  35. Benezra R, Davis RL, Lockshon D, Turner DL, Weintraub H (1990) The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell 61: 49–59

    Article  CAS  Google Scholar 

  36. Ross SE, Greenberg ME, Stiles CD (2003) Basic helix-loop-helix factors in cortical development. Neuron 39: 13–25

    Article  CAS  Google Scholar 

  37. Hollnagel A, Oehlmann V, Heymer J, Ruther U, Nordheim A (1999) Id genes are direct targets of bone morphogenetic protein induction in embryonic stem cells. J Biol Chem 274: 19838–19845

    Article  CAS  Google Scholar 

  38. Aruga J, Tohmonda T, Homma S, Mikoshiba K (2002) Zicl promotes the expansion of dorsal neural progenitors in spinal cord by inhibiting neuronal differentiation. Dev Biol 244: 329–341

    Article  CAS  Google Scholar 

  39. Weinmaster G (1997) The ins and outs of notch signaling. Mol Cell Neurosci 9: 91–102

    Article  CAS  Google Scholar 

  40. Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284: 770–776

    Article  CAS  Google Scholar 

  41. Sasai Y, Kageyama R, Tagawa Y, Shigemoto R, Nakanishi S (1992) Two mammalian helix-loop-helix factors structurally related to Drosophila hairy and Enhancer of split. Genes Dev 6: 2620–2634

    Article  CAS  Google Scholar 

  42. Ohtsuka T, Ishibashi M, Gradwohl G, Nakanishi S, Guillemot F, Kageyama R (1999) Hesl and HesS as notch effectors in mammalian neuronal differentiation. EMBO .1 18: 2196–2207

    Google Scholar 

  43. Akazawa C, Sasai Y, Nakanishi S, Kageyama R (1992) Molecular characterization of a rat negative regulator with a basic helix-loop-helix structure predominantly expressed in the developing nervous system. J Biol Chem 267: 21879–21885

    CAS  Google Scholar 

  44. Kretzschmar M, Doody J, Massague J (1997) Opposing BMP and EGF signalling pathways converge on the TGF-beta family mediator Smad1. Nature 389: 618–622

    Article  CAS  Google Scholar 

  45. Goumans MJ, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P, ten Dijke P (2002) Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO J 21: 1743–1753

    Article  CAS  Google Scholar 

  46. Qian X, Shen Q, Goderie SK, He W, Capela A, Davis AA, Temple S (2000) Timing of CNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells. Neuron 28: 69–80

    Article  CAS  Google Scholar 

  47. Mehler MF, Mabie PC, Zhu G, Gokhan S, Kessler JA (2000) Developmental changes in progenitor cell responsiveness to bone morphogenetic proteins differentially modulate progressive CNS lineage fate. Dev Neurosci 22: 74–85

    Article  CAS  Google Scholar 

  48. White PM, Morrison SJ, Orimoto K, Kubu CJ, Verdi JM, Anderson DJ (2001) Neural crest stem cells undergo cell-intrinsic developmental changes in sensitivity to instructive differentiation signals. Neuron 29: 57–71

    Article  CAS  Google Scholar 

  49. Mujtaba T, Piper DR, Kalyani A, Groves AK, Lucero MT, Rao MS (1999) Lineage-restricted neural precursors can be isolated from both the mouse neural tube and cultured ES cells. Dev Biol 214: 113–127

    Article  CAS  Google Scholar 

  50. Kondo T, Raff M (2000) Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 289: 1754–1757

    Article  CAS  Google Scholar 

  51. Morrow T, Song MR, Ghosh A (2001) Sequential specification of neurons and glia by developmentally regulated extracellular factors. Development 128: 3585–3594

    CAS  Google Scholar 

  52. Sun Y, Nadal-Vicens M, Misono S, Lin MZ, Zubiaga A, Hua X, Fan G, Greenberg ME (2001) Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell 104: 365–376

    Article  CAS  Google Scholar 

  53. Rajan P, Panchision DM, Newell LF, McKay RD (2003) BMPs signal alternately through a SMAD or FRAP-STAT pathway to regulate fate choice in CNS stem cells. J Cell Biol 161: 911–921

    Article  CAS  Google Scholar 

  54. Nakashima K, Yanagisawa M, Arakawa H, Kimura N, Hisatsune T, Kawabata M, Miyazono K, Taga T (1999) Synergistic signaling in fetal brain by STAT3-Smad1 complex bridged by p300 [see comments]. Science 284: 479–482

    Article  CAS  Google Scholar 

  55. Nakashima K, Yanagisawa M, Arakawa H, Taga T (1999) Astrocyte differentiation mediated by LIF in cooperation with BMP2. FEBS Lett 457: 43–46

    Article  CAS  Google Scholar 

  56. Varley JE, Wehby RG, Rueger DC, Maxwell GD (1995) Number of adrenergic and islet1 immunoreactive cells is increased in avian trunk neural crest cultures in the presence of human recombinant osteogenic protein-1. Dev Dyn 203: 434–447

    Article  CAS  Google Scholar 

  57. Varley JE, Maxwell GD (1996) BMP-2 and BMP-4, but not BMP-6, increase the number of adrenergic cells which develop in quail trunk neural crest cultures. Exp Neurol 140: 84–94

    Article  CAS  Google Scholar 

  58. Reissmann E, Ernsberger U, Francis-West PH, Rueger D, Brickell PM, Rohrer H (1996) Involvement of bone morphogenetic protein-4 and bone morphogenetic protein-7 in the differentiation of the adrenergic phenotype in developing sympathetic neurons. Development 122: 2079–2088

    CAS  Google Scholar 

  59. Fann MJ, Patterson PH (1994) Depolarization differentially regulates the effects of bone morphogenetic protein (BMP)-2, BMP-6, and activin A on sympathetic neuronal phenotype. J Neurochem 63: 2074–2079

    Article  CAS  Google Scholar 

  60. Muller F, Rohrer H (2002) Molecular control of ciliary neuron development: BMPs and downstream transcriptional control in the parasympathetic lineage. Development 129: 5707–5717

    Article  CAS  Google Scholar 

  61. Ai X, Cappuzzello J, Hall AK (1999) Activin and bone morphogenetic proteins induce calcitonin gene-related peptide in embryonic sensory neurons in vitro. Mol Cell Neurosci 14: 506–518

    Article  CAS  Google Scholar 

  62. Goridis C, Rohrer H (2002) Specification of catecholaminergic and serotonergic neurons. Nat Rev Neurosci 3: 531–541

    Article  CAS  Google Scholar 

  63. Marques G, Bao H, Haerry TE, Shimell MJ, Duchek P, Zhang B, O’Connor MB (2002) The Drosophila BMP type II receptor Wishful Thinking regulates neuromuscular synapse morphology and function. Neuron 33: 529–543

    Article  CAS  Google Scholar 

  64. Allan DW, St Pierre SE, Miguel-Aliaga I, Thor S (2003) Specification of neuropeptide cell identity by the integration of retrograde BMP signaling and a combinatorial transcription factor code. Cell 113: 73–86

    Article  CAS  Google Scholar 

  65. Morrison SJ, Csete M, Groves AK, Melega W, Wold B, Anderson DJ (2000) Culture in reduced levels of oxygen promotes clonogenic sympathoadrenal differentiation by isolated neural crest stem cells. J Neurosci 20: 7370–7376

    CAS  Google Scholar 

  66. Schneider C, Wicht H, Enderich J, Wegner M, Rohrer H (1999) Bone morphogenetic proteins are required in vivo for the generation of sympathetic neurons. Neuron 24: 861–870

    Article  CAS  Google Scholar 

  67. Lo L, Tiveron MC, Anderson DJ (1998) MASH1 activates expression of the paired homeodomain transcription factor Phox2a, and couples pan-neuronal and subtype-specific components of autonomic neuronal identity. Development 125: 609–620

    CAS  Google Scholar 

  68. Pattyn A, Morin X, Cremer H, Goridis C, Brunet JF (1999) The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 399: 366–370

    Article  CAS  Google Scholar 

  69. Stanke M, Junghans D, Geissen M, Goridis C, Ernsberger U, Rohrer H (1999) The Phox2 homeodomain proteins are sufficient to promote the development of sympathetic neurons. Development 126: 4087–4094

    CAS  Google Scholar 

  70. Howard MJ, Stanke M, Schneider C, Wu X, Rohrer H (2000) The transcription factor dHAND is a downstream effector of BMPs in sympathetic neuron specification [In Process Citation]. Development 127: 4073–4081

    CAS  Google Scholar 

  71. Kim HS, Seo H, Yang C, Brunet JF, Kim KS (1998) Noradrenergic-specific transcription of the dopamine beta-hydroxylase gene requires synergy of multiple cis-acting elements including at least two Phox2a-binding sites. J Neurosci 18: 8247–8260

    CAS  Google Scholar 

  72. Hirsch MR, Tiveron MC, Guillemot F, Brunet JF, Goridis C (1998) Control of noradrenergic differentiation and Phox2a expression by MASH1 in the central and peripheral nervous system. Development 125: 599–608

    CAS  Google Scholar 

  73. Morin X, Cremer H, Hirsch MR, Kapur RP, Goridis C, Brunet JF (1997) Defects in sensory and autonomic ganglia and absence of locus coeruleus in mice deficient for the homeobox gene Phox2a. Neuron 18: 411–423

    Article  CAS  Google Scholar 

  74. Guo S, Brush J, Teraoka H, Goddard A, Wilson SW, Mullins MC, Rosenthal A (1999) Development of noradrenergic neurons in the zebrafish hindbrain requires BMP, FGF8, and the homeodomain protein soulless/Phox2a. Neuron 24: 555–566

    Article  CAS  Google Scholar 

  75. Vogel-Hopker A, Rohrer H (2002) The specification of noradrenergic locus coeruleus (LC) neurones depends on bone morphogenetic proteins (BMPs). Development 129: 983–991

    CAS  Google Scholar 

  76. Lints R, Emmons SW (1999) Patterning of dopaminergic neurotransmitter identity among Caenorhabditis elegans ray sensory neurons by a TGFbeta family signaling pathway and a Hox gene. Development 126: 5819–5831

    CAS  Google Scholar 

  77. Reiriz J, Espejo M, Ventura F, Ambrosio S, Alberch J (1999) Bone morphogenetic protein-2 promotes dissociated effects on the number and differentiation of cultured ventral mesencephalic dopaminergic neurons. J Neurobiol 38: 161–170

    Article  CAS  Google Scholar 

  78. Brederlau A, Faigle R, Kaplan P, Odin P, Funa K (2002) Bone morphogenetic proteins but not growth differentiation factors induce dopaminergic differentiation in mesencephalic precursors. Mol Cell Neurosci 21: 367–378

    Article  CAS  Google Scholar 

  79. Daadi M, Arcellana-Panlilio MY, Weiss S (1998) Activin co-operates with fibroblast growth factor 2 to regulate tyrosine hydroxylase expression in the basal forebrain ventricular zone progenitors. Neuroscience 86: 867–880

    Article  CAS  Google Scholar 

  80. Stull ND, Jung PV, lacovitti L (2001) Induction of a dopaminergic phenotype in cultured striatal neurons by bone morphogenetic proteins. Brain Res Dev Brain Res 130: 91–98

    Article  CAS  Google Scholar 

  81. Hattori A, Katayama M, Iwasaki S, Ishii K, Tsujimoto M, Kohno M (1999) Bone morphogenetic protein-2 promotes survival and differentiation of striatal GABAergic neurons in the absence of glial cell proliferation. J Neurochem 72: 2264–2271

    Article  CAS  Google Scholar 

  82. Lopez-Coviella I, Berse B, Krauss R, Thies RS, Blusztajn JK (2000) Induction and maintenance of the neuronal cholinergic phenotype in the central nervous system by BMP-9. Science 289: 313–316

    Article  CAS  Google Scholar 

  83. Darland DC, Nishi R (1998) Activin A and follistatin influence expression of somatostatin in the ciliary ganglion in vivo. Dev Biol 202: 293–303

    Article  CAS  Google Scholar 

  84. Hall AK, Burke RM, Anand M, Dinsio KJ (2002) Activin and bone morphogenetic proteins are present in perinatal sensory neuron target tissues that induce neuropeptides. J Neurobiol 52: 52–60

    Article  CAS  Google Scholar 

  85. Lein P, Johnson M, Guo X, Rueger D, Higgins D (1995) Osteogenic protein-1 induces dendritic growth in rat sympathetic neurons. Neuron 15: 597–605

    Article  CAS  Google Scholar 

  86. Withers GS, Higgins D, Charette M, Banker G (2000) Bone morphogenetic protein-7 enhances dendritic growth and receptivity to innervation in cultured hippocampal neurons. Eur J Neurosci 12: 106–116

    Article  CAS  Google Scholar 

  87. Le Roux P, Behar S, Higgins D, Charette M (1999) OP-1 enhances dendritic growth from cerebral cortical neurons in vitro. Exp Neurol 160: 151–163

    Article  Google Scholar 

  88. Gratacos E, Checa N, Alberch J (2001) Bone morphogenetic protein-2, but not bone morphogenetic protein-7, promotes dendritic growth and calbindin phenotype in cultured rat striatal neurons. Neuroscience 104: 783–790

    Article  CAS  Google Scholar 

  89. Granholm AC, Sanders LA, Ickes B, Albeck D, Hoffer BJ, Young DA, Kaplan PL (1999) Effects of osteogenic protein-1 (0P-1) treatment on fetal spinal cord transplants to the anterior chamber of the eye. Cell Transplant 8: 75–85

    CAS  Google Scholar 

  90. Kim IJ, Beck HN, Lein PJ, Higgins D (2002) Interferon gamma induces retrograde dendritic retraction and inhibits synapse formation. J Neurosci 22: 4530–4539

    CAS  Google Scholar 

  91. Kim IJ, Drahushuk K, Kim W, Lein PJ, Andres DA, Higgins D (2004) Extracellular signal-regulated kinases regulate dendritic growth in rat sympathetic neurons. J Neurosci 24: in press

    Google Scholar 

  92. Guo X, Rueger D, Higgins D (1998) Osteogenic protein-1 and related bone morphogenetic proteins regulate dendritic growth and the expression of microtubule-associated protein-2 in rat sympathetic neurons. Neurosci Lett 245: 131–134

    Article  CAS  Google Scholar 

  93. Beck HN, Drahushuk K, Jacoby DB, Higgins D, Lein PJ (2001) Bone morphogenetic protein-5 (BMP-5) promotes dendritic growth in cultured sympathetic neurons. BMC Neurosci 2: 12

    Article  CAS  Google Scholar 

  94. Caceres A, Mautino J, Kosik KS (1992) Suppression of MAP2 in cultured cerebellar macroneurons inhibits minor neurite formation. Neuron 9: 607–618

    Article  CAS  Google Scholar 

  95. Guo X, Lin Y, Horbinski C, Drahushuk KM, Kim IJ, Kaplan PL, Lein P, Wang T, Higgins D (2001) Dendritic growth induced by BMP-7 requires Smad1 and proteasome activity. J Neurobiol 48: 120–130

    Article  CAS  Google Scholar 

  96. Horbinski C, Stachowiak EK, Chandrasekaran V, Miuzukoshi E, Higgins D, Stachowiak MK (2002) Bone morphogenetic protein-7 stimulates initial dendritic growth in sympathetic neurons through an intracellular fibroblast growth factor signaling pathway. J Neurochem 80: 54–63

    Article  CAS  Google Scholar 

  97. Gruendler C, Lin Y, Farley J, Wang T (2001) Proteasomal degradation of Smad1 induced by bone morphogenetic proteins. J Biol Chem 276: 46533–46543

    Article  CAS  Google Scholar 

  98. Kim RH, Wang D, Tsang M, Martin J, Huff C, de Caestecker MP, Parks WT, Meng X, Lechleider RJ, Wang T, et al (2000) A novel smad nuclear interacting protein, SNIP1, suppresses p300-dependent TGF-beta signal transduction. Genes Dev 14: 1605–1616

    CAS  Google Scholar 

  99. Shou J, Rim PC, Calof AL (1999) BMPs inhibit neurogenesis by a mechanism involving degradation of a transcription factor [see comments]. Nat Neurosci 2: 339–345

    Article  CAS  Google Scholar 

  100. Sun Y, Liu X, Ng-Eaton E, Lodish HF, Weinberg RA (1999) SnoN and Ski protooncoproteins are rapidly degraded in response to transforming growth factor beta signaling. Proc Natl Acad Sci USA 96: 12442–12447

    Article  CAS  Google Scholar 

  101. Lein PJ, Beck HN, Chandrasekaran V, Gallagher PJ, Chen HL, Lin Y, Guo X, Kaplan PL, Tiedge H, Higgins D (2002) Glia induce dendritic growth in cultured sympathetic neurons by modulating the balance between bone morphogenetic proteins (BMPs) and BMP antagonists. J Neurosci 22: 10377–10387

    CAS  Google Scholar 

  102. Lein PJ, Chen HL, Beck HN, Dorsaneo D, Hedges AM, Gonsiorek E, Yost B, Higgins D, Morales M, Hoffer BJ (2003) Target-derived BMPs regulate dendritic growth in sympathetic neurons. Soc Neurosci Abstr 24: 127

    Google Scholar 

  103. Drahushuk K, Connell TD, Higgins D (2002) Pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal peptide inhibit dendritic growth in cultured sympathetic neurons. J Neurosci 22: 6560–6569

    CAS  Google Scholar 

  104. Chandrasekaran V, Zhai Y, Wagner M, Kaplan PL, Napoli JL, Higgins D (2000) Retinoic acid regulates the morphological development of sympathetic neurons. J Neurobiol 42: 383–393

    Article  CAS  Google Scholar 

  105. Massague J (2003) Integration of Smad and MAPK pathways: a link and a linker revisited. Genes Dev 17: 2993–2997

    Article  CAS  Google Scholar 

  106. Guo X, Metzler-Northrup J, Lein P, Rueger D, Higgins D (1997) Leukemia inhibitory factor and ciliary neurotrophic factor regulate dendritic growth in cultures of rat sympathetic neurons. Brain Res Dev Brain Res 104: 101–110

    Article  CAS  Google Scholar 

  107. Guo X, Chandrasekaran V, Lein P, Kaplan PL, Higgins D (1999) Leukemia inhibitory factor and ciliary neurotrophic factor cause dendritic retraction in cultured rat sympathetic neurons. J Neurosci 19: 2113–2121

    CAS  Google Scholar 

  108. Banner LR, Patterson PH (1994) Major changes in the expression of the mRNAs for cholinergic differentiation factor/leukemia inhibitory factor and its receptor after injury to adult peripheral nerves and ganglia. Proc Natl Acad Sci USA 91: 7109–7113

    Article  CAS  Google Scholar 

  109. Sun Y, Landis SC, Zigmond RE (1996) Signals triggering the induction of leukemia inhibitory factor in sympathetic superior cervical ganglia and their nerve trunks after axonal injury. Mol Cell Neurosci 7: 152–163

    Article  CAS  Google Scholar 

  110. Purves D, Snider WD, Voyvodic JT (1988) Trophic regulation of nerve cell morphology and innervation in the autonomic nervous system. Nature 336: 123–128

    Article  CAS  Google Scholar 

  111. Colavita A, Krishna S, Zheng H, Padgett RW, Culotti JG (1998) Pioneer axon guidance by UNC-129, a C. elegans TGF-beta. Science 281: 706–709

    Article  CAS  Google Scholar 

  112. Augsburger A, Schuchardt A, Hoskins S, Dodd J, Butler S (1999) BMPs as mediators of roof plate repulsion of commissural neurons. Neuron 24: 127–141

    Article  CAS  Google Scholar 

  113. Dionne MS, Brunet LJ, Eimon PM, Harland RM (2002) Noggin is required for correct guidance of dorsal root ganglion axons. Dev Biol 251: 283–293

    Article  CAS  Google Scholar 

  114. Liu J, Wilson S, Reh T (2003) BMP receptor lb is required for axon guidance and cell survival in the developing retina. Dev Biol 256: 34–48

    Article  CAS  Google Scholar 

  115. Postlethwaite AE, Raghow R, Stricklin G, Ballou L, Sampath TK (1994) Osteogenic protein-1, a bone morphogenic protein member of the TGF-beta superfamily, shares chemotactic but not fibrogenic properties with TGF-beta. J Cell Physiol 161: 562–570

    Article  CAS  Google Scholar 

  116. Butler SJ, Dodd J (2003) A role for BMP heterodimers in roof plate-mediated repulsion of commissural axons. Neuron 38: 389–401

    Article  CAS  Google Scholar 

  117. Aberle H, Haghighi AP, Fetter RD, McCabe BD, Magalhaes TR, Goodman CS (2002) wishful thinking encodes a BMP type II receptor that regulates synaptic growth in Drosophila. Neuron 33: 545–558

    Article  CAS  Google Scholar 

  118. Zito K, Parnas D, Fetter RD, Isacoff EY, Goodman CS (1999) Watching a synapse grow: noninvasive confocal imaging of synaptic growth in Drosophila. Neuron 22: 719–729

    CAS  Google Scholar 

  119. Schuster CM, Davis GW, Fetter RD, Goodman CS (1996) Genetic dissection of structural and functional components of synaptic plasticity. I. Fasciclin II controls synaptic stabilization and growth. Neuron 17: 641–654

    Article  CAS  Google Scholar 

  120. Schuster CM, Davis GW, Fetter RD, Goodman CS (1996) Genetic dissection of structural and functional components of synaptic plasticity. II. Fasciclin II controls presynaptic structural plasticity. Neuron 17: 655–667

    Article  CAS  Google Scholar 

  121. Rawson JM, Lee M, Kennedy EL, Selleck SB (2003) Drosophila neuromuscular synapse assembly and function require the TGF-beta type I receptor saxophone and the transcription factor Mad. J Neurobiol 55: 134–150

    Article  CAS  Google Scholar 

  122. McCabe BD, Marques G, Haghighi AP, Fetter RD, Crotty ML, Haerry TE, Goodman CS, O’Connor MB (2003) The BMP homolog Gbb provides a retrograde signal that regulates synaptic growth at the Drosophila neuromuscular junction. Neuron 39: 241–254

    Article  CAS  Google Scholar 

  123. Zhang F, Endo S, Cleary LJ, Eskin A, Byrne JH (1997) Role of transforming growth factor-beta in long-term synaptic facilitation in Aplysia. Science 275: 1318–1320

    Article  CAS  Google Scholar 

  124. Chin J, Angers A, Cleary LJ, Eskin A, Byrne JH (1999) TGF-betal in Aplysia: role in long-term changes in the excitability of sensory neurons and distribution of TbetaR-IIlike immunoreactivity. Learn Mem 6: 317–330

    CAS  Google Scholar 

  125. Tomizawa K, Matsui H, Kondo E, Miyamoto K, Tokuda M, Itano T, Nagahata S, Akagi T, Hatase O (1995) Developmental alteration and neuron-specific expression of bone morphogenetic protein-6 (BMP-6) mRNA in rodent brain. Brain Res Mol Brain Res 28: 122–128

    Article  CAS  Google Scholar 

  126. Mehler MF, Mabie PC, Zhang D, Kessler JA (1997) Bone morphogenetic proteins in the nervous system. Trends Neurosci 20: 309–317

    Article  CAS  Google Scholar 

  127. Soderstrom S, Ebendal T (1999) Localized expression of BMP and GDF mRNA in the rodent brain. J Neurosci Res 56: 482–492

    Article  CAS  Google Scholar 

  128. Martinez G, Carnazza ML, Di Giacomo C, Sorrenti V, Vanella A (2001) Expression of bone morphogenetic protein-6 and transforming growth factor-beta1 in the rat brain after a mild and reversible ischemic damage. Brain Res 894: 1–11

    Article  CAS  Google Scholar 

  129. Angley C, Kumar M, Dinsio KJ, Hall AK, Siegel RE (2003) Signaling by bone morphogenetic proteins and Smad1 modulates the postnatal differentiation of cerebellar cells. J Neurosci 23: 260–268

    CAS  Google Scholar 

  130. Shen W, Finnegan S, Lein PJ, Sullivan S, Slaughter M, Higgins D (2004) Bone morphogenetic proteins regulate ionotropic glutamate receptors. Submitted

    Google Scholar 

  131. Schober A, Bottner M, Strelau J, Kinscherf R, Bonaterra GA, Barth M, Schilling L, Fairlie WD, Breit SN, Unsicker K (2001) Expression of growth differentiation factor-15/ macrophage inhibitory cytokine-1 (GDF-15/MIC-1) in the perinatal, adult, and injured rat brain. J Comp Neurol 439: 32–45

    Article  CAS  Google Scholar 

  132. Johanson CE, Palm DE, Primiano MJ, McMillan PN, Chan P, Knuckey NW, Stopa EG (2000) Choroid plexus recovery after transient forebrain ischemia: role of growth factors and other repair mechanisms. Cell Mol Neurobiol 20: 197–216

    Article  CAS  Google Scholar 

  133. Helder MN, Ozkaynak E, Sampath KT, Luyten FP, Latin V, Oppermann H, Vukicevic S (1995) Expression pattern of osteogenic protein-1 (bone morphogenetic protein- 7) in human and mouse development. J Histochem Cytochem 43: 1035–1044

    Article  CAS  Google Scholar 

  134. Dattatreyamurty B, Roux E, Horbinski C, Kaplan PL, Robak LA, Beck HN, Lein P, Higgins D, Chandrasekaran V (2001) Cerebrospinal fluid contains biologically active bone morphogenetic protein-7. Exp Neurol 172: 273–281

    Article  CAS  Google Scholar 

  135. Strelau J, Sullivan A, Bottner M, Lingor P, Falkenstein E, Suter-Crazzolara C, Galter D, Jaszai J, Krieglstein K, Unsicker K (2000) Growth/differentiation factor-15/macrophage inhibitory cytokine-1 is a novel trophic factor for midbrain dopaminergic neurons in vivo. J Neurosci 20: 8597–8603

    CAS  Google Scholar 

  136. Lim DA, Tramontin AD, Trevejo JM, Herrera DG, Garcia-Verdugo JM, Alvarez-Buylia A (2000) Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 28: 713–726

    Article  CAS  Google Scholar 

  137. Zhu G, Mehler MF, Mabie PC, Kessler JA (1999) Developmental changes in progenitor cell responsiveness to cytokines. J Neurosci Res 56: 131–145

    Article  CAS  Google Scholar 

  138. Ueki T, Tanaka M, Yamashita K, Mikawa S, Qiu Z, Maragakis NJ, Hevner RF, Miura N, Sugimura H, Sato K (2003) A novel secretory factor, Neurogenesin-1, provides neurogenic environmental cues for neural stem cells in the adult hippocampus. J Neurosci 23: 11732–11740

    CAS  Google Scholar 

  139. Lewen A, Soderstrom S, Hillered L, Ebendal T (1997) Expression of serine/threonine kinase receptors in traumatic brain injury. Neuroreport 8: 475–479.

    Article  CAS  Google Scholar 

  140. Charytoniuk DA, Traiffort E, Pinard E, Issertial 0, Seylaz J, Ruat M (2000) Distribution of bone morphogenetic protein and bone morphogenetic protein receptor transcripts in the rodent nervous system and up-regulation of bone morphogenetic protein receptor type II in hippocampal dentate gyrus in a rat model of global cerebral ischemia [In Process Citation]. Neuroscience 100: 33–43

    Article  CAS  Google Scholar 

  141. Chang CF, Lin SZ, Chiang YH, Morales M, Chou J, Lein P, Chen HL, Hoffer BJ, Wang Y (2003) Intravenous administration of bone morphogenetic protein-7 after ischemia improves motor function in stroke rats. Stroke 34: 558–564

    Article  CAS  Google Scholar 

  142. Lai M, Gluckman P, Dragunow M, Hughes PE (1997) Focal brain injury increases activin betaA mRNA expression in hippocampal neurons. Neuroreport 8: 2691–2694

    Article  CAS  Google Scholar 

  143. Setoguchi T, Yone K, Matsuoka E, Takenouchi H, Nakashima K, Sakou T, Komiya S, Izumo S (2001) Traumatic injury-induced BMP7 expression in the adult rat spinal cord. Brain Res 921: 219–225

    Article  Google Scholar 

  144. Lefer AM, Tsao PS, Ma XL, Sampath TK (1992) Anti-ischaemic and endothelial protective actions of recombinant human osteogenic protein (h0P-1). J Mo/ Cell Cardiol 24: 585–593

    Article  CAS  Google Scholar 

  145. Perides G, Jensen FE, Edgecomb P, Rueger DC, Charness ME (1995) Neuroprotective effect of human osteogenic protein-1 in a rat model of cerebral hypoxia/ischemia. Neurosci Lett 187: 21–24

    Article  CAS  Google Scholar 

  146. Lin SZ, Hoffer BJ, Kaplan P, Wang Y (1999) Osteogenic protein-1 protects against cerebral infarction induced by MCA ligation in adult rats. Stroke 30: 126–133

    Article  CAS  Google Scholar 

  147. Wang Y, Chang CF, Morales M, Chou J, Chen HL, Chiang YH, Lin SZ, Cadet JL, Deng X, Wang JY et al (2001) Bone morphogenetic protein-6 reduces ischemia-induced brain damage in rats. Stroke 32: 2170–2178

    Article  CAS  Google Scholar 

  148. Kawamata T, Ren J, Chan TC, Charette M, Finklestein SP (1998) Intracisternal osteogenic protein-1 enhances functional recovery following focal stroke. Neuroreport 9: 1441–1445

    Article  CAS  Google Scholar 

  149. Ren J, Kaplan PL, Charette MF, Speller H, Finklestein SP (2000) Time window of intracisternal osteogenic protein-1 in enhancing functional recovery after stroke. Neuropharmacology 39: 860–865

    Article  CAS  Google Scholar 

  150. Esquenazi S, Monnerie H, Kaplan P, Le Roux P (2002) BMP-7 and excess glutamate: opposing effects on dendrite growth from cerebral cortical neurons in vitro. Exp Neurol 176: 41–54

    Article  CAS  Google Scholar 

  151. Krieglstein K, Suter-Crazzolara C, Hotten G, Pohl J, Unsicker K (1995) Trophic and protective effects of growth/differentiation factor 5, a member of the transforming growth factor-beta superfamily, on midbrain dopaminergic neurons. J Neurosci Res 42: 724–732

    Article  CAS  Google Scholar 

  152. Sullivan AM, Opacka-Juffry J, Hotten G, Pohl J, Blunt SB (1997) Growth/differentiation factor 5 protects nigrostriatal dopaminergic neurones in a rat model of Parkinson’s disease. Neurosci Lett 233: 73–76

    Article  CAS  Google Scholar 

  153. Sullivan AM, Pohl J, Blunt SB (1998) Growth/differentiation factor 5 and glial cell line-derived neurotrophic factor enhance survival and function of dopaminergic grafts in a rat model of Parkinson’s disease. Eur J Neurosci 10: 3681–3688

    Article  CAS  Google Scholar 

  154. Espejo M, Cutillas B, Ventura F, Ambrosio S (1999) Exposure of foetal mesencephalic cells to bone morphogenetic protein-2 enhances the survival of dopaminergic neurones in rat striatal grafts. Neurosci Lett 275: 13–16

    Article  CAS  Google Scholar 

  155. Hughes PE, Alexi T, Williams CE, Clark RG, Gluckman PD (1999) Administration of recombinant human Activin-A has powerful neurotrophic effects on select striatal phenotypes in the quinolinic acid lesion model of Huntington’s disease. Neuroscience 92: 197–209

    Article  CAS  Google Scholar 

  156. Tretter YP, Hertel M, Munz B, ten Bruggencate G, Werner S, Alzheimer C (2000) Induction of activin A is essential for the neuroprotective action of basic fibroblast growth factor in vivo. Nat Med 6: 812–815

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this chapter

Cite this chapter

Lein, P., Higgins, D. (2004). Bone morphogenetic proteins in the nervous system. In: Vukicevic, S., Sampath, K.T. (eds) Bone Morphogenetic Proteins: Regeneration of Bone and Beyond. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7857-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7857-9_11

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9598-9

  • Online ISBN: 978-3-0348-7857-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics