Skip to main content

The role of bone morphogenetic proteins in developing and adult kidney

  • Chapter
Bone Morphogenetic Proteins: Regeneration of Bone and Beyond

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

The kidney has been identified as a major site of BMP-7 (BMP-7) synthesis during embryonal and postnatal development [1-4]. Gene knockout [5, 6] and in vitro experiments [4, 7] demonstrated the importance of BMP-7 in kidney development. Many developmental features are recapitulated during renal injury, and BMPs may be important in both preservation of function and resistance to injury [8, 9]. BMP7 has a cytoprotective and anti-inflammatory effect in both acute and chronic renal failure [8, 9].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Helder MN, Ozkaynak E, Sampath TK, Luyten FP, Latin V, Oppermann H, Vukicevic S (1995) Expression pattern of osteogenic protein-1 (bone morphogenetic protein-7) in human and mouse development. J Histochem Cytochem 43: 1035–1044

    Article  CAS  Google Scholar 

  2. Vukicevic S, Stavljenic A, Pecina M (1995) Discovery and clinical applications of bone morphogenetic proteins. Eur J ain Chem Clin Biochem 33: 661–671

    CAS  Google Scholar 

  3. Ozkaynak E, Schnegelsberg PN, Opperman H (1991) Murine osteogenic protein -1 (OP-1): high levels of mRNA in kidney. Biochem Biophys Res Commun 179: 116–123

    Article  CAS  Google Scholar 

  4. Vukicevic S, Kopp JB, Luyten FB, Sampath TK (1996) Induction of nephrogenic mesenchyme by osteogenic protein-1 (bone morphogenetic protein 7). Proc Natl Acad Sci USA 93: 9021–9026

    Article  CAS  Google Scholar 

  5. Dudley AT, Lyons KM, Robertson EJ (1995) A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev 9: 2795–2807

    Article  CAS  Google Scholar 

  6. Luo 0, Hofmann A, Bronckers JJ, Sohocki M, Bradley A, Karsenty G (1995) BMP-7 is an inducer of nephrogenesis and is also required for eye development and skeletal patterning. Genes Dev 9: 2808–2820

    Article  CAS  Google Scholar 

  7. Simon M, Maresh JG, Harris SE, Hernandez JD, Arar M, Olson MS, Abboud HE (1999) Expression of bone morphogenetic protein-7 mRNA in normal and ischemic adult rat kidney. Am J Physiol 276: 382–389

    Google Scholar 

  8. Vukicevic S, Basic V, Rogic D, Basic N, Shih M, Shepard A, Jin D, Dattatreyamurty B,Jones W, Dorai H et al (1998) Osteogenic protein-1 (bone morphogenetic protein-7) reduces severity of injury after ischemic acute renal failure in rat. J ath Invest 102: 202–214

    Article  CAS  Google Scholar 

  9. Hruska KA, Guo G, Wozniak M, Martin D, Miller S, Liapis H, Loveday K, Klahr S,Sampath TK, Morrissey J (2000) Osteogenic protein-1 prevents renal fibrogenesis associated with ureteral obstruction. Am J Physiol Renal Physiol 279: F130–F143

    CAS  Google Scholar 

  10. Saxen L (1987) Organogenesis of the kidney. Cambridge Univ. Press, Cambridge

    Book  Google Scholar 

  11. Grobstein C (1953) Inductive epithelio-mesenchymal interactions in cultured organ rudiments of the mouse. Science 118: 52–55

    Article  CAS  Google Scholar 

  12. Grobstein C (1956) Trans-filter induction of tubules in mouse metanephrogenic mesenchyme. Exp Cell Res 10: 434–440

    Article  Google Scholar 

  13. Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, Jaenisch R (1993) WT-1 is required for early kidney development. Cell 74: 679–691

    Article  CAS  Google Scholar 

  14. Lee SB, Huang K, Palmer R, Truong VB, Herzlinger D, Kolquist KA, Wong J, Paulding C, Yoon SK, Gerald W et al (1999) The Wilms tumor suppressor WT1 encodes a transcriptional activator of amphiregulin. Cell 98: 663–673

    Article  CAS  Google Scholar 

  15. Rothenpieler UW, Dressler GR (1993) Pax-2 is required for mesenchyme-to-epithelium conversion during kidney development. Development 119: 711–720

    CAS  Google Scholar 

  16. Dressler GR, Deutsch U, Chowdhury K, Nornes HO, Gruss P (1990) Pax-2, a new murine paired-box-containing gene and its expression in the developing excretory system. Development 109: 787–795

    CAS  Google Scholar 

  17. Karavanov AA, Karavanova I, Perantoni A, Dawid IB (1998) Expression pattern of the rat Lim-1 homeobox gene suggests a dual role during kidney development. Int J Dev Biol 42: 61–66

    CAS  Google Scholar 

  18. Brophy PD, Ostrom L, Lang KM, Dressler GR (2001) Regulation of ureteric bud outgrowth by Pax2-dependent activation of the glial derived neurotrophic factor gene. Development 128: 4747–4756

    CAS  Google Scholar 

  19. Xu PX, Adams J, Peters H, Brown MC, Heaney S, Maas R (1999) Eya1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nat Genet 23: 113–117

    Article  CAS  Google Scholar 

  20. Chan DC, Wynshaw-Boris A, Leder P (1995) Formin isoforms are differentially expressed in the mouse embryo and are required for normal expression of Fgf-4 and Shh in the limb bud. Development 121: 3151–3162

    CAS  Google Scholar 

  21. Moore MW, Klein RD, Farinas I, Sauer H, Armanini M, Philips H, Reichardt LF, Ryan AM, Carver-Moore K, Rosenthal A (1996) Renal and neuronal abnormalities in mice lacking GDNF. Nature 382: 76–79

    Article  CAS  Google Scholar 

  22. Jing S, Wen D, Yu Y, Holst PL, Luo Y, Fang M, Tamir R, Antonio L, Hu Z, Cupples R et al (1996) GDNF-induced activation of the Ret protein tyrosin kinase is mediated by GDNFR- alpha, a novel receptor for GDNF. Cell 85: 1113–1124

    Article  CAS  Google Scholar 

  23. Pichel JG, Shen L, Sheng HZ, Granholm AC, Drago J, Grinberg A, Lee EJ, Huang SP, Saarma M, Hoffer BJ et al (1996) Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382: 73–76

    Article  CAS  Google Scholar 

  24. Suchardt A, D’Agati V, Larsson-Blomberg L, Constantini F, Pachinis V (1994) Defects in kidney and enteric nervous system of mice lacking the tyrosin kinase receptor Ret. Nature 367: 380–383

    Article  Google Scholar 

  25. Vega QC, Worby CA, Lechner MS, Dixon JE, Dressler GR (1996) Glial cell line-derived neurotrophic factor activates RET and promotes kidney morphogenesis. Proc Natl Acad Sci USA 93: 10657–10661

    Article  CAS  Google Scholar 

  26. Cacalano G, Farinas I, Wang LC, Hagler K, Forgie A, Moore M, Armanini M, Phillips H, Ryan AM, Reichardt LF et al (1998) GFRalphal is an essential receptor component for GDNF in the developing nervous system and kidney. Neuron 21: 53–62

    Article  CAS  Google Scholar 

  27. Pelletier J, Schalling M, Buckler AJ, Rogers A, Haber DA, Housman D (1991) Expression of the Wilms’ tumor gene WT-1 in the murine urogenital system. Genes Dev 5: 1345–1356

    Article  CAS  Google Scholar 

  28. Torres M, Gomez Pardo E, Dressler GR, Gruss P (1995) Pax-2 controls multiple steps of urogenital development. Development 121: 4057–4065

    CAS  Google Scholar 

  29. Ryan G, Steele-Perkins V, Morris J, Rauscher FJ, Dressler GR (1995) Repression of Pax-2 by WT-1 during normal kidney development. Development 121: 867–875

    CAS  Google Scholar 

  30. Dressler GR, Wilkinson JE, Rothenpieler UW, patterson LT, Williams-Simons L, Westphal H (1993) Deregulation of Pax-2 expression in transgenic mice generates severe kidney abnormalities. Nature 362: 65–67

    Article  CAS  Google Scholar 

  31. Finch PW, Cunha GR, Rubin JS, Wong J, Ron D (1995) Pattern of keratinocyte growth factor and keratinocyte growth factor receptor expression during mouse fetal development suggests a role in mediating morphogenetic mesenchymal-epithelial interactions. Dev Dyn 203: 223–240

    Article  CAS  Google Scholar 

  32. Qiao J, Uzzo R, Obara-Ishihara T, Degenstein L, Fuchs E, Herzlinger D (1999) FGF-7 modulates ureteric bud growth and nephron number in the developing kidney. Development 126: 547–554

    CAS  Google Scholar 

  33. Sekine K, Ohuchi H, Fujiwara M, Yamasaki M, Yoshizawa T, Sato T, Yagishita N, Matsui D, Koga Y, Itoh N et al (1999) Fgf10 is essential for limb and lung formation. Nat Genet 21: 138–141

    Article  CAS  Google Scholar 

  34. Plisov SY, Yoshino K, Dove LF, Higinbotham KG, Rubin JS, Perantoni AO (2001) TGF beta 2, LIF and FGF2 cooperate to induce nephrogenesis. Development 128: 1045–1057

    CAS  Google Scholar 

  35. Barasch J, Yang J, Ware CB, Taga T, Yoshida K, Erdjument-Bromage H, Tempst P, Parravicini E, Malach S, Aranoff T, Oliver JA (1999) Mesenchymal to epithelial conversion in rat metanephros is induced by LIE Cell 99: 377–386

    Article  CAS  Google Scholar 

  36. Montesano R, Matsumoto K, Nakamura T, Orci L (1991) Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell 67: 901–908

    Article  CAS  Google Scholar 

  37. Barros EJG, Santos OFP, Matsumoto K, Nakamura T, Nigam SK (1995) Differential tubulogenic and branching morphogenetic activities of growth factors: implications for epithelial tissue development. Proc Natl Acad Sci USA 92: 4412–4416

    Article  CAS  Google Scholar 

  38. Piscione TD, Yager TD, Gupta IR, Grinfeld B, Pei Y, Attisano L, Wrana J, Rosenblum ND (1997) BMP-2 and BMP-7 exert direct and opposite effects on renal branching morphogenesis. Am J Physiol 273: F961–F975

    CAS  Google Scholar 

  39. Santos OFP, Nigam SK (1993) HGF-induced tubulogenesis and branching of epithelial cells is modulated by extracellular matrix and TGF-ß. Dev Biol 160: 293–302

    Article  CAS  Google Scholar 

  40. Ritvos 0, Tuuri T, Eramaa M, Sainio K, Hilden K, Saxen L, Gilbert SF (1995) Activin disrupts epithelial branching morphogenesis in developing glandular organs of the mouse. Mech Dev 50: 229–245

    Article  Google Scholar 

  41. Sakurai H, Barros EJ, Tsukamoto T, Barasch J, Nigam SK (1997) An in vitro tubulogenesis system using cell lines derived from the embryonic kidney shows dependence on multiple soluble growth factors. Proc Natl Acad Sci USA 94: 6279–6284

    Article  CAS  Google Scholar 

  42. Barasch J, Yang J, Qiao JY, Tempst P, Erdjument-Bromage H, Leung W, Oliver JA (1999) Tissue inhibitor of metalloproteinase-2 stimulates mesenchymal growth and regulates epithelial branching during morphogenesis of the rat metanephros. J Clin Invest 103: 1299–1307

    Article  CAS  Google Scholar 

  43. Hogan BLM (1996) Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes & Develop 10: 1580–1594

    Article  CAS  Google Scholar 

  44. Piscione TD, Rosenblum ND (2002) The molecular control of renal branching mor-phogenesis: current knowledge and emerging insights. Differentiation 70: 227–246

    Article  CAS  Google Scholar 

  45. King JA, Marker PC, Seung KJ, Kingsley DM (1994) BMPS and the molecular, skeletal, and soft-tissue alterations in short ear mice. Dev Biol 166: 112–122

    Article  CAS  Google Scholar 

  46. Miyazaki Y, Oshima K, Fogo A, Hogan BL, Ichikawa I (2000) Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J Clin Invest 105: 863–873

    Article  CAS  Google Scholar 

  47. Miyazaki Y, Oshima K, Fogo A, Ichikawa I (2003) Evidence that bone morphogenetic protein 4 has multiple biological functions during kidney and urinary tract development. Kidney Int 63: 835–844

    Article  CAS  Google Scholar 

  48. Dudley AT, Robertson EJ (1997) Overlapping expression domains of bone morphogenetic protein family members potentially account for limited tissue defects in BMP-7 deficient embryos. Dev Dyn 208: 349–362

    Article  CAS  Google Scholar 

  49. Stark K, Vainio S, Vassileva G, McMahon AP (1994) Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 372: 679–683

    Article  CAS  Google Scholar 

  50. Hatini V, Huh SO, Hertzlinger D, Soares VC, Lai E (1996) Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeting disruption of Winged Helix transcription factor BF-2. Genes Dev 10: 1467–1478

    Article  CAS  Google Scholar 

  51. Leveen P, Pekny M, Gebre-Medhin S, Swolin B, Larsson E, Betzholtz C (1994) Mice deficient for PDGF B show renal, cardiovascular and haematological abnormalities. Genes Dev 8: 1875–1887

    Article  CAS  Google Scholar 

  52. Karsenty G, Luo G, Hofmann C, Bradley A (1996) BMP-7 is required for nephrogenesis, eye development, and skeletal patterning. Ann NY Acad Sci 785: 98–107

    Article  CAS  Google Scholar 

  53. Kitten AM, Kreisberg JI, Olson MS (1999) Expression of osteogenic protein-1 mRNA in cultured kidney. J Cell Physiol 181: 410–415

    Article  CAS  Google Scholar 

  54. Godin RE, Takaesu NT, Robertson EJ, Dudley AT (1998) Regulation of BMP-7 expression during kidney development. Development 125: 3473–3482

    CAS  Google Scholar 

  55. Obara-Ishihara T, Kuhlman J, Niswander L, Herzlinger D (1999) The surface ectoderm is essential for nephric duct formation in intermediate mesoderm. Development 126: 1103–1108

    CAS  Google Scholar 

  56. Raatikainen-Ahokas A, Hytonen M, Tehnunen A, Sainio K, Sariola H (2000) BMP-4 affects the differentiation of metanephric mesenchyme and reveals an early anterior-posterior axis of the embryonic kidney. Dev Dyn 217: 146–158

    Article  CAS  Google Scholar 

  57. Zhang H, Bradley A (1996) Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 122: 2977–2986

    CAS  Google Scholar 

  58. Piscione TD, Phan T, Rosenblum ND (2001) BMP7 controls collecting tubule cell proliferation and apoptosis via Smad1-dependent and -independent pathways. Am J Physiol 280: F19–F33

    CAS  Google Scholar 

  59. Gupta IR, Macias-Silva M, Kim S, Zhou X, Piscione TD, Whiteside C, Wrana JL, Rosenblum ND (2000) BMP-2/ALK3 and HGF signal in parallel to regulate renal collecting duct morphogenesis. J Cell Sci 113: 269–278

    CAS  Google Scholar 

  60. Ghosh Choundhury G, Kim YS, Simon M, Wozney J, Harris S, Ghosh Choundhury N, Abboud HE (1999) Bone morphogenetic protein 2 inhibits platelet-derived growth factor-induced c-fos gene transcription and DNA synthesis in mesangial cells. Involvement of mitogen-activated protein kinase. J Biol Chem 274: 10897–10902

    Article  Google Scholar 

  61. Vukicevic S, Helder MN, Luyten FP (1994) Developing human lung and kidney are major sites for synthesis of bone morphogenetic protein-3 (osteogenin). J Histochem Cytochem 42: 869–875

    Article  CAS  Google Scholar 

  62. Takahashi H, Ikeda T (1996) Transcripts for two members of the transforming growth factor-beta superfamily BMP-3 and BMP-7 are expressed in developing rat embryos. Dev Dyn 207: 439–449

    Article  CAS  Google Scholar 

  63. Martinez G, Loveland KL, Clark AT, Dziadek M, Bertram JF (2001) Expression of bone morphogenetic protein receptors in the developing mouse metanephros. Exp Nephrol 9: 372–379

    Article  CAS  Google Scholar 

  64. Vrljicak P, Myburgh D, Ryan AK, van Rooijen MA, Mummery CL, Gupta IR (2004) Smad expression during kidney development. Am J Physiol Renal Physiol 286: F625–633

    Article  CAS  Google Scholar 

  65. Hsu DR, Economides AN, Wang X, Eimon PM, Harland RM (1998) The Xenopus dorsalizing factor Gremlin identifies a novel family of secreted proteins that antagonize BMP activities. Mol Cell 1: 673–683

    Article  CAS  Google Scholar 

  66. Khokha MK, Hsu D, Brunet LJ, Dionne MS, Harland RM (2003) Gremlin is the BMP antagonist required for maintenance of Shh and Fgf signals during limb patterning. Nat Genet 34: 303–307

    Article  CAS  Google Scholar 

  67. McMahon R, Murphy M, Clarkson M, Taal M, Mackenzie HS, Godson C, Martin F, Brady HR (2000) IHG-2, a mesangial cell gene induced by high glucose, is human gremlin. Regulation by extracellular glucose concentration, cyclic mechanical strain, and transforming growth factor-betal. J Biol Chem 275: 9901–9904

    Article  CAS  Google Scholar 

  68. Lappin DW, McMahon R, Murphy M, Brady HR (2002) Gremlin: an example of the re-emergence of developmental programmes in diabetic nephropathy. Nephrol Dial Transplant 9: 65–67

    Article  Google Scholar 

  69. Dolan V, Hensey C, Brady HR (2003) Diabetic nephropathy: renal development gone awry? Pediatr Nephrol 18: 75–84

    Google Scholar 

  70. Yanagita M, Oka M, Watabe T, Iguchi H, Niida A, Takahashi S, Akiyama T, Miyazono K, Yanagisawa M, Sakurai T (2004) USAG-1: a bone morphogenetic protein antagonist abundantly expressed in the kidney. Biochem Biophys Res Commun 316: 490–500

    Article  CAS  Google Scholar 

  71. Dewulf N, Verschueren K, Lonnoy 0, Moren A, Grimsby S, Vande Spiegle K, Miyazono K, Huylebroeck D, Ten Dijke P (1995) Distinct spatial and temporal expression patterns of two type 1 receptors for bone morphogenetic proteins during mouse embryogenesis. Endocrinology 136: 2652–2663

    Article  CAS  Google Scholar 

  72. Mishina YA, Susuki A, Ueno N, Behringer RR (1995) BMPr encodes a type I bone morphogenetic protein receptor that is essential for gastrulation during mouse embryogenesis. Genes Dev 9: 3027–3037

    Article  CAS  Google Scholar 

  73. Gupta IR, Macias-Silva M, Kim S, Zhou X, Piscione TD, Whiteside C, Wrana JL, Rosenblum ND (2000) HGF Rescues BMP-2-mediated inhibition of renal collecting duct morphogenesis without interrupting Smad1 dependent signaling. J Cell Sci 113: 269–278

    CAS  Google Scholar 

  74. Piscione TD, Cella C, Rosenblum ND (2001) ALK3 and SMAD4 regulate collecting duct morphogenesis in vivo [abstract]. J Am Soc Nephrol 12: 525A

    Google Scholar 

  75. Thadhani R, Pascual M, Bonventre JV (1996) Acute renal failure. N Engl J Med 334: 1448–1460

    Article  CAS  Google Scholar 

  76. Humes HD, MacKay SM, Funke AJ, Buffington DA (1997) Acute renal failure: growth factors, cell therapy and gene therapy. Proc Assoc Am Physicians 109: 547–557

    CAS  Google Scholar 

  77. Hirschberg R, Ding H (1998) Growth factors and acute renal failure. Semin Nephrol 18: 191–207

    CAS  Google Scholar 

  78. Humes DH, Liu S (1994) Cellular and molecular basis of renal repair in acute renal failure. J Am Soc Nephrol 5: 1–11

    Google Scholar 

  79. Witzgall R, Brown D, Schwarz C, Bonventre JV (1994) Localization of proliferating cell number antigen, vimentin, c-Fos and clusterin in the post-ischemic kidney: evidence for a heterogenous genetic response among nephron segments and a large pool of mitoticaly active and differentiated cells. J Clin Invest 93: 2175–2188

    Article  CAS  Google Scholar 

  80. Hirschberg R, Kopple JD (1989) Evidence that insulin-like growth factor I increases renal plasma flow and glomerular filtration rate in fasted rats. J Clin Invest 83: 326–330

    Article  CAS  Google Scholar 

  81. Andersson G, Jennische E (1988) IGF-I immunoreactivity is expressed by regenerating renal tubule cells after ischaemic injury in the rat. Acta Physiol Scand 132: 453–457

    Article  CAS  Google Scholar 

  82. Sugimura K, Goto T, Kasai S, Tsuchida K, Takemoto Y, Yamagami S (1998) The activation of serum hepatocyte growth factor in acute renal failure. Nephron 76: 364–365

    Article  Google Scholar 

  83. Coimbra TM, Cieslinski DA, Humes HD (1990) Epidermal growth factor accelerates renal repair in mercuric chloride nephrotoxicity. Am J Physiol 259: 438–443

    Google Scholar 

  84. Weinberg JM (1993) The cellular basis of nephrotoxicity. In: Schrier RW, Gottschalk CW (eds): Diseases of the kidney. Little, Brown and Company, Boston, 1031–1098

    Google Scholar 

  85. Guillermina G, Adriana TM, Monica EM (1989) The implications of renal glutathione level in mercuric chloride nephrotoxicity. Toxicology 58: 187–195

    Article  CAS  Google Scholar 

  86. Houser MT, Milner LS, Kolbeck PC, Wei SH, Stohs SJ (1992) Glutathione monoethyl ester moderates mercuric chloride-induced acute renal failure. Nephron 61: 449–455

    Article  CAS  Google Scholar 

  87. Nath KA, Croatt AJ, Likely S, Behrens TW, Warden D (1996) Renal oxidant injury and oxidant response induced by mercury. Kidney Int 50: 1032–1043

    Article  CAS  Google Scholar 

  88. Southard J, Nitisewojo P, Green DE (1974) Mercurial toxicity and the perturbation of the mitochondrial control system. Fed Proc 33: 2147–2153

    CAS  Google Scholar 

  89. Fausto N (2000) Liver regeneration. J Hepathol 32: 19–31

    Article  CAS  Google Scholar 

  90. Reddi AH, Huggins C (1972) Biochemical sequences in the transformation of normal fibroblasts in adolescent rats. Proc Natl Acad Sci USA 69: 1601–1605

    Article  CAS  Google Scholar 

  91. Luyten FP, Cunningham NS, Vukicevic S, Paralkar V, Ripamonti U, Reddi AH (1992) Advances in osteogenin and related bone morphogenetic proteins in bone induction and repair. Acta Orthop Belg 58: 263–267

    Google Scholar 

  92. Dudley AT, Godin RE, Robertson EJ (1999) Interaction between FGF and BMP signaling pathways regulates development of metanephric mesenchyme. Genes Dev 15: 1601–1613

    Article  Google Scholar 

  93. Almanzar MM, Kendall FS, Philip DH, Piqueras AI, Jones WK, Charette MF, Paredes AL (1998) Osteogenic protein-1 mRNA expression is selectively modulated after acute ischemic renal injury. J Am Soc Nephrol 9: 1456–1463

    CAS  Google Scholar 

  94. Couser WG (1993) Mediators of immune glomerular injury. Clin Invest 71: 8–11

    Article  Google Scholar 

  95. Couser WG (1993) Pathogenesis of glomerulonephritis. Kidney Int 44: S519–S526

    Google Scholar 

  96. Johnson RJ, Hugo C, Hasley C, Pichler RH, Bassuk J, Thomas S, Suga S, Couser WG, Shankland SJ (1998) Mechanisms of progressive glomerulonecrosis and tubulointerstitial fibrosis. Clin Exp Nephrol 2: 307–312

    Article  CAS  Google Scholar 

  97. Fern RJ, Yesko CM, Thornhill BA, Kim H-Y, Smithies 0, Chevalier RL (1999) Reduced angiotensinogen expression attenuates renal interstitial fibrosis in obstructive nephropathy in mice. J Clin Invest 103: 39–46

    Article  CAS  Google Scholar 

  98. Klahr SS (1998) Nephrology forum: obstructive nephropathy. Kidney Int 54: 286–300

    CAS  Google Scholar 

  99. Klahr S, Morrissey J (1998) Angiotensin II and gene expression in the kidney. Am J Kidney Dis 31: 171–176

    Article  CAS  Google Scholar 

  100. Border WA, Noble NA (1998) Interactions of transforming growth factor-beta and angiotensin II in renal fibrosis. Hypertension 31: 181–188

    Article  CAS  Google Scholar 

  101. Douglas JG, Romero M, Hopfer U (1990) Signaling mechanisms coupled to the angiotensin receptor of proximal tubular epithelium. Kidney Int 30: S43–S47

    CAS  Google Scholar 

  102. Kaneto H, Morrissey J, Klahr S (1993) Increased expression of TGF-13 1 mRNA in the obstructed kidney of rats with unilateral ureteral ligation. Kidney Int 44: 313–321

    Article  CAS  Google Scholar 

  103. Kaneto H, Morrissey J, McCracken R, Ishidoya S, Reyes A, Klahr S (1996) The expression of mRNA for tumor necrosis factor increases in the obstructed kidney of rats soon after unilateral ureteral ligation. Nephrology 2: 161–166

    Article  CAS  Google Scholar 

  104. Kalahr S, Ishidoya S, Morrissey J (1995) Role of angiotensin II in the tubulointerstitial fibrosis of obstructive nephropathy. Am J Kidney Dis 26: 141–146

    Article  Google Scholar 

  105. Johnson RJ, Alpers CE, Yoshimura A, Lombardi D, Pritzl P, Floege J, Schwartz SM (1992) Renal injury from angiotensin II-mediated hypertension. Hypertension 19: 464–474

    Article  CAS  Google Scholar 

  106. Kagami S, Border WA, Miller DE, Noble NA (1994) Angiotensin II stimulates extracel-lular matrix protein synthesis through induction of transforming growth factor-beta expression in rat glomerular mesangial cells. J OM Invest 93: 2431–2437

    Article  CAS  Google Scholar 

  107. Yoo KH, Thornhill BA, Wolstenholme JT, Chevalier RL (1998) Tissue-specific regulation of growth factors and clusterin by angiotensin II. Am J Hypertens 11: 715–722

    Article  CAS  Google Scholar 

  108. Chevalier RL, Kim A, Thornhill BA, Wolstenholme JT (1999) Recovery following relief of unilateral ureteral obstruction in the neonatal rat. Kidney Int 55: 793–807

    Article  CAS  Google Scholar 

  109. Nagle RB, Johnson ME, Jervis HR (1976) Proliferation of renal interstitial cells following injury induced by ureteral obstruction. Lab Invest 35: 18–22

    CAS  Google Scholar 

  110. Ng YY, Huang TP, Yang WC, Chen ZP, Yang AH, Mu W, Nikolic-Paterson DJ, Atkins RC, Lan HY (1998) Tubular epithelial-myofibroblast transdifferentiation in progressive tubulointerstitial fibrosis in 5/6 nephrectomized rats. Kidney Int 54: 864–876

    Article  CAS  Google Scholar 

  111. Ishidoya S, Morrissey J, McCracken R, Reyes A, Klahr S (1995) Angiotensin II receptor antagonist ameliorates renal tubulointerstitial fibrosis caused by unilateral ureteral obstruction. Kidney Int 47: 1285–1294

    Article  CAS  Google Scholar 

  112. Ishidoya S, Morrissey J, McCracken R, Klahr S (1996) Delayed treatment with enalapril halts tubulointerstitial fibrosis in rats with obstructive nephropathy. Kidney Int 49: 1110–1119

    Article  CAS  Google Scholar 

  113. Wang S, Chen Q, Simon TC, Strebeck F, Chaudhary L, Morrissey J, Liapis H, Klahr S, Hruska KA (2003) Bone morphogenic protein-7 (BMP-7), a novel therapy for diabetic nephropathy. Kidney Int 63: 2037–2049

    Article  CAS  Google Scholar 

  114. Wang SN, Lapage J, Hirschberg R (2001) Loss of tubular bone morphogenetic protein7 in diabetic nephropathy. J Am Soc Nephrol 12: 2392–2399

    CAS  Google Scholar 

  115. Gould SE, Day M, Jones SS, Dorai H (2002) BMP-7 regulates chemokine, cytokine, and hemodynamic gene expression in proximal tubule cells. Kidney Int 61: 51–60

    Article  CAS  Google Scholar 

  116. Lappin DW, Hensey C, McMahon R, Godson C, Brady HR (2000) Gremlins, glomeruli and diabetic nephropathy. Curr Opin Nephrol Hypertens 9: 469–472

    Article  CAS  Google Scholar 

  117. Malluche HH, Ritz E, Lange HP, Kutschera L, Hodgson M, Seiffert U, Schoeppe W (1976) Bone histology in incipient and advanced renal failure. Kidney Int 9: 355–362

    Article  CAS  Google Scholar 

  118. Nomura S, Ogawa Y, Osawa G, Katagiri M, Harada T, Nagahana H (1996) Myelofibrosis secondary to renal osteodystrophy. Nepbron 72: 683–687

    Article  CAS  Google Scholar 

  119. Rao DS, Shih MS, Mohini R (1993) Effect of serum parathyroid hormone and bone marrow fibrosis on the response to erythropoietin in uremia. N Engl J Med 328: 171–175

    Article  CAS  Google Scholar 

  120. Gallieni M, Corsi C, Brancaccio D (2000) Hyperparathyroidism and anemia in renal failure. Am J Nephrol 20: 89–96

    Article  CAS  Google Scholar 

  121. Hruska KA, Saab G, Chaudhary LR, Quinn CO, Lund RJ, Surendran K (2004) Kidney-bone, bone-kidney, and cell-cell communications in renal osteodystrophy. Semin Nephrol 24: 25–38

    Article  Google Scholar 

  122. Goodman WG, Ramirez JA, Belin T (1994) Development of adynamic bone in patients with secondary hyperparathyroidism after intermittent calcitriol therapy. Kidney Int 46: 1160–1166

    Article  CAS  Google Scholar 

  123. Hruska KA (2000) Pathophysiology of renal osteodystrophy. Pediatr Nephrol 14: 636–640

    Article  CAS  Google Scholar 

  124. Isogai Y, Akatsu T, Ishizuya T, Yamaguchi A, Hori M, Takahashi N, Suda T (1996) Parathyroid hormone regulates osteoblast differentiation positively or negatively depending on the differentiation stages. J Bone Miner Res 11: 1384–1393

    Article  CAS  Google Scholar 

  125. Chaudhary LR, Avioli LV (1998) Identification and activation of mitogen-activated protein (MAP) kinase in normal human osteoblastic and bone marrow stromal cells: Attenuation of MAP kinase activation by cAMP, parathyroid hormone and forskolin. Mol Cell Biochem 178: 59–68

    Article  CAS  Google Scholar 

  126. Gonzalez EA, Lund RJ, Martin KJ, McCartney JE, Tondravi MM, Sampath TK, Hruska KA (2002) Treatment of a murine model of high-turnover renal osteodystrophy by exogenous BMP-7. Kidney Int 61: 1322–1331

    Article  CAS  Google Scholar 

  127. Lund RJ, Davies MR, Brown AJ, Hruska KA (2004) Successful treatment of an adynamic bone disorder with bone morphogenetic protein-7 in a renal ablation model. J Am Soc Nephrol 15: 359–369

    Article  CAS  Google Scholar 

  128. Zeisberg M, Muller GA, Kalluri R (2004) Are there endogenous molecules that protect kidneys from injury? The case for bone morphogenic protein-7 (BMP-7). Nephrol Dial Transplant 19: 759–761

    Article  CAS  Google Scholar 

  129. Remuzzi G, Bertani T (1998) Pathophysiology of progressive nephropathies. N Engl J Med 339: 1448–1456

    Article  CAS  Google Scholar 

  130. Brenner BM (2002) Remission of renal disease: recounting the challenge, acquiring the goal. J Clin Invest 110: 1753–1758

    CAS  Google Scholar 

  131. Zeisberg M, Hanai J, Sugimoto H, Mammoto T, Charytan D, Strutz F, Kalluri R (2003) BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med 9: 964–968

    Article  CAS  Google Scholar 

  132. Zeisberg M, Kalluri R (2004) The role of epithelial-to-mesenchymal transition in renal fibrosis. J Mol Med 82: 175–181

    Article  Google Scholar 

  133. Hay ED (1995) An overview of epithelio-mesenchymal transformation. Acta Anat 154: 8–20

    Article  CAS  Google Scholar 

  134. Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2: 442–454

    Article  CAS  Google Scholar 

  135. Tomooka S, Border WA, Marshall BC, Noble NA (1992) Glomerular matrix accumulation is linked to inhibition of the plasmin protease system. Kidney Int 42: 1462–1469

    Article  CAS  Google Scholar 

  136. Wilson HM, Reid FJ, Brown PA, Power DA, Haites NE, Booth NA (1993) Effect of transforming growth factor-beta 1 on plasminogen activators and plasminogen activator inhibitor-1 in renal glomerular cells. Exp Nephrol 1: 343–350

    CAS  Google Scholar 

  137. Wang S, Hirschberg R (2003) BMP7 antagonizes TGF-beta-dependent fibrogenesis in mesangial cells. Am J Physiol Renal Physiol 284: F1006–1013

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this chapter

Cite this chapter

Borovecki, F., Simic, P., Grgurevic, L., Vukicevic, S. (2004). The role of bone morphogenetic proteins in developing and adult kidney. In: Vukicevic, S., Sampath, K.T. (eds) Bone Morphogenetic Proteins: Regeneration of Bone and Beyond. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7857-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7857-9_10

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9598-9

  • Online ISBN: 978-3-0348-7857-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics