Skip to main content

Remodeling of arachidonic acid in inflammatory cells of the human lung

  • Chapter
Arachidonate Remodeling and Inflammation

Abstract

Arachidonic acid (AA) is a key molecule in the modulation of several pathophysiological events in mammalian cells, including gene expression, membrane signal transduction, cell differentiation and apoptosis, exocytosis and generation of eicosanoids [14]. It has been now convincingly demonstrated that the intracellular levels of free AA within mammalian cells are crucial for most of these events and, therefore, they are carefully regulated by complex biochemical reactions [5, 6]. These reactions are catalyzed by enzymes involved in both AA mobilization and reesterification into the storage sites and transfer from one intracellular pool to another [7, 8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramson SB, Leszczynska-Piziak J, Weissmann G (1991) Arachidonic acid as a second messenger. Interactions with a GTP-binding protein of human neutrophils. J Immunol 147: 231–236

    PubMed  CAS  Google Scholar 

  2. Lennartz MR, Brown EJ (1991) Arachidonic acid is essential for IgG Fc receptor-mediated phagocytosis by human monocytes. J Immunol 147: 621–626

    PubMed  CAS  Google Scholar 

  3. Rotman EI, Brostrom MA, Brostrom CO (1992) Inhibition of protein synthesis in intact mammalian cells by arachidonic acid. Biochem J 282: 487–494

    PubMed  CAS  Google Scholar 

  4. Cockcroft S (1992) G-protein-regulated phospholipases C, D and A2-mediated signalling in neutrophils. Biochim Biophys Acta 1113: 135–160

    Article  PubMed  CAS  Google Scholar 

  5. Irvine RF (1982) How is the level of free arachidonic acid controlled in mammalian cells? Biochem J 204: 3–16

    PubMed  CAS  Google Scholar 

  6. Chilton FH, Fonteh AN, Surette ME, Triggiani M, Winkler JD (1996) Control of arachidonate levels within inflammatory cells. Biochim Biophys Acta 1299: 1–15

    Article  PubMed  Google Scholar 

  7. MacDonald JI, Sprecher H (1991) Phospholipid fatty acid remodeling in mammalian cells. Biochim Biophys Acta 1084: 105–121

    Article  PubMed  CAS  Google Scholar 

  8. Yamashita A, Sugiura T, Waku K (1997) Acyltransferases and transacylases involved in fatty acid remodeling of phospholipids and metabolism of bioactive lipids in mammalian cells. J Biochem (Tokyo) 122: 1–16

    Article  CAS  Google Scholar 

  9. Reinhold SL, Zimmerman GA, Prescott SM, McIntyre TM (1989) Phospholipid remodeling in human neutrophils. Parallel activation of a deacylation/reacylation cycle and platelet-activating factor synthesis. J Biol Chem 264: 21652–21659

    PubMed  CAS  Google Scholar 

  10. Waku K (1992) Origins and fates of fatty acyl-CoA esters. Biochim Biophys Acta 1124: 101–111

    Article  PubMed  CAS  Google Scholar 

  11. Chilton FH, Murphy RC (1986) Remodeling of arachidonate-containing phosphoglycerides within the human neutrophil. J Biol Chem 261: 7771–7777

    PubMed  CAS  Google Scholar 

  12. Tessner TG, Greene DG, Wykle RL (1990) Selective deacylation of arachidonate-containing ethanolamine-linked phosphoglycerides in stimulated human neutrophils. J Biol Chem 265: 21032–21038

    PubMed  CAS  Google Scholar 

  13. Fonteh AN, Chilton FH (1992) Rapid remodeling of arachidonate from phosphatidylcholine to phosphatidylethanolamine pools during mast cell activation. J Immunol 148: 1784–1791

    PubMed  CAS  Google Scholar 

  14. Nakamura T, Fonteh AN, Hubbard WC, Triggiani M, Inagaki N, Ishizaka T, Chilton FH (1991) Arachidonic acid metabolism during antigen and ionophore activation of the mouse bone marrow derived mast cell. Biochim Biophys Acta 1085: 191–200

    Article  PubMed  CAS  Google Scholar 

  15. Winkler JD, Eris T, Sung CM, Chabot-Fletcher M, Mayer RJ, Surette ME, Chilton FH (1996) Inhibitors of coenzyme A-independent transacylase induce apoptosis in human HL-60 cells. J Pharmacol Exp Ther 279: 956–966

    PubMed  CAS  Google Scholar 

  16. Samet JM, Fonteh AN, Galli SJ, Tsai M, Fasano MB, Chilton FH (1996) Alterations in arachidonic acid metabolism in mouse mast cells induced to undergo maturation in vitro in response to stem cell factor. J Allergy Clin Immunol 97: 1329–1341

    Article  PubMed  CAS  Google Scholar 

  17. Fonteh AN, LaPorte T, Swan D, McAlexander MA (2001) A decrease in remodeling accounts for the accumulation of arachidonic acid in murine mast cells undergoing apoptosis. J Biol Chem 276: 1439–1449

    Article  PubMed  CAS  Google Scholar 

  18. Laposata M, Kaiser SL, Capriotti AM (1988) Icosanoid production can be decreased without alterations in cellular arachidonate content or enzyme activities required for arachidonate release and icosanoid synthesis. J Biol Chem 263: 3266–3273

    PubMed  CAS  Google Scholar 

  19. Triggiani M, Connell TR, Chilton FH (1990) Evidence that increasing the cellular content of eicosapentaenoic acid does not reduce the biosynthesis of platelet-activating factor. J Immunol 145: 2241–2248

    PubMed  CAS  Google Scholar 

  20. Chilton FH, Patel M, Fonteh AN, Hubbard WC, Triggiani M (1993) Dietary n-3 fatty acid effects on neutrophil lipid composition and mediator production. Influence of duration and dosage. J Clin Invest 91: 115–122

    Article  PubMed  CAS  Google Scholar 

  21. Winkler JD, Fonteh AN, Sung CM, Heravi JD, Nixon AB, Chabot-Fletcher M, Griswold D, Marshall LA, Chilton FH (1995) Effects of CoA-independent transacylase inhibitors on the production of lipid inflammatory mediators. J Pharmacol Exp Ther 274: 1338–1347

    PubMed  CAS  Google Scholar 

  22. Chilton FH, Lichtenstein LM (1990) Lipid mediators of the allergic reaction. Chem Immunol 49: 173–205

    Article  PubMed  CAS  Google Scholar 

  23. Holtzman MJ (1991) Arachidonic acid metabolism. Implications of biological chemistry for lung function and disease. Am Rev Respir Dis 143: 188–203

    PubMed  CAS  Google Scholar 

  24. Murakami M, Hara N, Kudo I, Inoue K (1993) Triggering of degranulation in mast cells by exogenous type II phospholipase A2. J Immunol 151: 5675–5684

    PubMed  CAS  Google Scholar 

  25. Hii CS, Huang ZH, Bilney A, Costabile M, Murray AW, Rathjen DA, Der CJ, Ferrante A (1998) Stimulation of p38 phosphorylation and activity by arachidonic acid in HeLa cells, HL60 promyelocytic leukemic cells, and human neutrophils. Evidence for cell type-specific activation of mitogen-activated protein kinases. J Biol Chem 273: 19277–19282

    Article  PubMed  CAS  Google Scholar 

  26. Camandola S, Leonarduzzi G, Musso T, Varesio L, Carini R, Scavazza A, Chiarpotto E, Baeuerle PA, Poli G (1996) Nuclear factor κB is activated by arachidonic acid but not by eicosapentaenoic acid. Biochem Biophys Res Commun 229: 643–647

    Article  PubMed  CAS  Google Scholar 

  27. Peplow PV (1996) Actions of cytokines in relation to arachidonic acid metabolism and eicosanoid production. Prostaglandins Leukot Essent Fatty Acids 54: 303–317

    Article  PubMed  CAS  Google Scholar 

  28. Serhan CN, Haeggstrom JZ, Leslie CC (1996) Lipid mediator networks in cell signaling: update and impact of cytokines. Faseb J 10: 1147–1158

    PubMed  CAS  Google Scholar 

  29. Nielson CP, Bayer C, Hodson S, Hadjokas N (1992) Regulation of the respiratory burst by cyclic 3’,5’-AMP, an association with inhibition of arachidonic acid release. J Immunol 149: 4036–4040

    PubMed  CAS  Google Scholar 

  30. Locati M, Riboldi E, Bonecchi R, Transidico P, Bernasconi S, Haribabu B, Morris AJ, Mantovani A, Sozzani S (2001) Selective induction of phospholipase D1 in pathogen-activated human monocytes. Biochem J 358: 119–125

    Article  PubMed  CAS  Google Scholar 

  31. Dennis EA, Rhee SG, Billah MM, Hannun YA (1991) Role of phospholipase in generating lipid second messengers in signal transduction. Faseb J 5: 2068–2077

    PubMed  CAS  Google Scholar 

  32. Chilton FH, Ellis JM, Olson SC, Wykle RL (1984) 1-O-alkyl-2-arachidonoyl-sn-glycero-3-phosphocholine. A common source of platelet-activating factor and arachidonate in human polymorphonuclear leukocytes. J Biol Chem 259: 12014–12019

    PubMed  CAS  Google Scholar 

  33. Mueller HW, O’Flaherty JT, Greene DG, Samuel MP, Wykle RL (1984) 1-O-alkyl-linked glycerophospholipids of human neutrophils: distribution of arachidonate and other acyl residues in the ether-linked and diacyl species. J Lipid Res 25: 383–388

    PubMed  CAS  Google Scholar 

  34. Strum JC, Emilsson A, Wykle RL, Daniel LW (1992) Conversion of 1-O-alkyl-2-acyl-snglycero-3-phosphocholine to 1-O-alk-1’-enyl-2-acyl-sn-glycero-3-phosphoethanolamine. A novel pathway for the metabolism of ether-linked phosphoglycerides. J Biol Chem 267: 1576–1583

    PubMed  CAS  Google Scholar 

  35. Ojima-Uchiyama A, Masuzawa Y, Sugiura T, Waku K, Saito H, Yui Y, Tomioka H (1988) Phospholipid analysis of human eosinophils: High levels of alkylacylglycerophosphocholine (PAF precursor). Lipids 23: 815–817

    Article  PubMed  CAS  Google Scholar 

  36. Triggiani M, Oriente A, Seeds MC, Bass DA, Marone G, Chilton FH (1995) Migration of human inflammatory cells into the lung results in the remodeling of arachidonic acid into a triglyceride pool. J Exp Med 182: 1181–1190

    Article  PubMed  CAS  Google Scholar 

  37. Johnson MM, Vaughn B, Triggiani M, Swan DD, Fonteh AN, Chilton FH (1999) Role of arachidonyl triglycerides within lipid bodies in eicosanoid formation by human polymorphonuclear cells. Am J Respir Cell Mol Biol 21: 253–258

    PubMed  CAS  Google Scholar 

  38. Calabrese C, Triggiani M, Marone G, Mazzarella G (2000) Arachidonic acid metabolism in inflammatory cells of patients with bronchial asthma. Allergy 55 (Suppl) 61: 27–30

    Article  Google Scholar 

  39. Triggiani M, Oriente A, Marone G (1994) Differential roles for triglyceride and phospholipid pools of arachidonic acid in human lung macrophages. J Immunol 152: 1394–1403

    PubMed  CAS  Google Scholar 

  40. Triggiani M, Oriente A, de Crescenzo G, Rossi G, Marone G (1995) Biochemical functions of a pool of arachidonic acid associated with triglycerides in human inflammatory cells. Int Arch Allergy Immunol 107: 261–263

    Article  PubMed  CAS  Google Scholar 

  41. Triggiani M, Schleimer RP, Warner JA, Chilton FH (1991) Differential synthesis of 1-acyl-2-acetyl-sn-glycero-3-phosphocholine and platelet-activating factor by human inflammatory cells. J Immunol 147: 660–666

    PubMed  CAS  Google Scholar 

  42. Triggiani M, Fonteh AN, Chilton FH (1992) Factors that influence the proportions of platelet-activating factor and 1-acyl-2-acetyl-sn-glycero-3-phosphocholine synthesized by the mast cell. Biochem J 286 (Pt 2): 497–503

    PubMed  CAS  Google Scholar 

  43. Chilton FH, Connell TR (1988) 1-ether-linked phosphoglycerides. Major endogenous sources of arachidonate in the human neutrophil. J Biol Chem 263: 5260–5265

    PubMed  CAS  Google Scholar 

  44. Fonteh AN, Chilton FH (1993) Mobilization of different arachidonate pools and their roles in the generation of leukotrienes and free arachidonic acid during immunologic activation of mast cells. J Immunol 150: 563–570

    PubMed  CAS  Google Scholar 

  45. Mayer RJ, Marshall LA (1993) New insights on mammalian phospholipase A2s; comparison of arachidonoyl-selective and -nonselective enzymes. Faseb J 7: 339–348

    PubMed  CAS  Google Scholar 

  46. Triggiani M, Schleimer RP, Tomioka K, Hubbard WC, Chilton FH (1992) Characterization of platelet-activating factor synthesized by normal and granulocyte-macrophage colony-stimulating factor-primed human eosinophils. Immunology 77: 500–504

    PubMed  CAS  Google Scholar 

  47. Marone G, Casolaro V, Patella V, Florio G, Triggiani M (1997) Molecular and cellular biology of mast cells and basophils. Int Arch Allergy Immunol 114: 207–217

    Article  PubMed  CAS  Google Scholar 

  48. Triggiani M, De Marino V, de Crescenzo G, Marone G (1997) Arachidonic acid remodeling in human inflammatory cells migrating to the lung in vivo. Int Arch Allergy Immunol 113: 190–192

    Article  PubMed  CAS  Google Scholar 

  49. Weller PF, Monahan-Earley RA, Dvorak HF, Dvorak AM (1991) Cytoplasmic lipid bodies of human eosinophils. Subcellular isolation and analysis of arachidonate incorporation. Am J Pathol 138: 141–148

    PubMed  CAS  Google Scholar 

  50. Dvorak AM, Dvorak HF, Peters SP, Shulman ES, MacGlashan DW Jr, Pyne K, Harvey VS, Galli SJ, Lichtenstein LM (1983) Lipid bodies: cytoplasmic organelles important to arachidonate metabolism in macrophages and mast cells. J Immunol 131: 2965–2976

    PubMed  CAS  Google Scholar 

  51. Sivarajan M, Hall ER, Wu KK, Rafelson ME, Manner C (1984) Regulation of intracellular arachidonate in normal and stressed endothelial cells. Biochim Biophys Acta 795: 271–276

    Article  PubMed  CAS  Google Scholar 

  52. Lewis GS, Wood DL, Caldwell DW (1992) Incorporation of [14C] arachidonic acid into ovine conceptus and endometrial lipids. Prostaglandins 44: 135–144

    Article  PubMed  CAS  Google Scholar 

  53. Blank ML, Smith ZL, Snyder F (1992) Contributing factors in the trafficking of 3Harachidonate between phospholipids. Biochim Biophys Acta 1124: 262–272

    Article  PubMed  CAS  Google Scholar 

  54. Blank ML, Smith ZL, Snyder F (1993) Arachidonate-containing triacylglycerols: biosynthesis and a lipolytic mechanism for the release and transfer of arachidonate to phospholipids in HL-60 cells. Biochim Biophys Acta 1170: 275–282

    Article  PubMed  CAS  Google Scholar 

  55. Ralph P, Harris PE, Punjabi CJ, Welte K, Litcofsky PB, Ho MK, Rubin BY, Moore MA, Springer TA (1983) Lymphokine inducing “terminal differentiation” of the human monoblast leukemia line U937: A role for gamma interferon. Blood 62: 1169–1175

    PubMed  CAS  Google Scholar 

  56. Roux-Lombard P, Cruchaud A, Dayer JM (1986) Effect of interferon-gamma and 1a,25-dihydroxyvitamin D3 on superoxide anion, prostaglandins E2, and mononuclear cell factor production by U937 cells. Cell Immunol 97: 286–296

    Article  PubMed  CAS  Google Scholar 

  57. Ways DK, Dodd RC, Bennett TE, Hooker JL, Earp HS (1988) Effect of retinoic acid on phorbol ester-stimulated differentiation and protein kinase C-dependent phosphorylation in the U937 human monoblastoid cell. Cancer Res 48: 5779–5787

    PubMed  CAS  Google Scholar 

  58. Rovera G, O’Brien TG, Diamond L (1979) Induction of differentiation in human promyelocytic leukemia cells by tumor promoters. Science 204: 868–870

    Article  PubMed  CAS  Google Scholar 

  59. Stone RM, Imamura K, Datta R, Sherman ML, Kufe DW (1990) Inhibition of phorbol ester-induced monocytic differentiation and c-fms gene expression by dexamethasone: potential involvement of arachidonic acid metabolites. Blood 76: 1225–1232

    PubMed  CAS  Google Scholar 

  60. Greenspan P, Fowler SD (1985) Spectrofluorometric studies of the lipid probe, Nile red. J Lipid Res 26: 781–789

    PubMed  CAS  Google Scholar 

  61. Weller PF, Dvorak AM (1985) Arachidonic acid incorporation by cytoplasmic lipid bodies of human eosinophils. Blood 65: 1269–1274

    PubMed  CAS  Google Scholar 

  62. Caulfield JP, Hein A, Rothenberg ME, Owen WF, Soberman RJ, Stevens RL, Austen KF (1990) A morphometric study of normodense and hypodense human eosinophils that are derived in vivo and in vitro. Am J Pathol 137: 27–41

    PubMed  CAS  Google Scholar 

  63. Petraroli A, Balestrieri B, Giannattasio G, Frattini A, Triggiani M, Marone G Pheno-typical and functional heterogeneity of human lung macrophages. Allergy; in press

    Google Scholar 

  64. Triggiani M, Granata F, Oriente A, De Marino V, Gentile M, Calabrese C, Palumbo C, Marone G (2000) Secretory phospholipases A2 induce beta-glucuronidase release and IL-6 production from human lung macrophages. J Immunol 164: 4908–4915

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this chapter

Cite this chapter

Triggiani, M. et al. (2004). Remodeling of arachidonic acid in inflammatory cells of the human lung. In: Fonteh, A.N., Wykle, R.L. (eds) Arachidonate Remodeling and Inflammation. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7848-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7848-7_7

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9594-1

  • Online ISBN: 978-3-0348-7848-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics