Skip to main content

Control of long chain polyunsaturated fatty acid levels and the role of inhibitors of incorporation and remodeling on the biosynthesis of lipid mediators

  • Chapter
  • 84 Accesses

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

AA and 20–22 carbon PUFAs play a number of roles in mammalian physiology [17]. These fatty acids serve as structural components of cellular membranes; as signaling molecules; and as precursors of mediators of inflammation, pain, cellular differentiation and cell growth [813]. Thus, their levels in mammalian systems are more tightly controlled than those of saturated fatty acids, which appear to primarily serve a structural role.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Das UN (1999) Essential fatty acids in health and disease. J Assoc Physicians India 47:906–911

    PubMed  CAS  Google Scholar 

  2. Faergeman NJ, Knudsen J (1997) Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signaling. Biochem J 323 (Pt 1): 1–12

    PubMed  CAS  Google Scholar 

  3. Farooqui AA, Horrocks LA, Farooqui T (2000) Deacylation and reacylation of neural membrane glycerophospholipids. J Mol Neurosci 14: 123–135

    Article  PubMed  CAS  Google Scholar 

  4. Gibson RA, Makrides M (2000) n-3 Polyunsaturated fatty acid requirements of term infants. Am J Clin Nutr 71: 251S–255S

    PubMed  CAS  Google Scholar 

  5. Innis SM (1993) Essential fatty acid requirements in human nutrition. Can J Physiol Pharmacol 71: 699–706

    Article  PubMed  CAS  Google Scholar 

  6. Kalmijn S (2000) Fatty acid intake and the risk of dementia and cognitive decline: A review of clinical and epidemiological studies. J Nutr Health Aging 4: 202–207

    PubMed  CAS  Google Scholar 

  7. Zurier RB (1993) Fatty acids, inflammation and immune responses. Prostaglandins Leukot Essent Fatty Acids 48: 57–62

    Article  PubMed  CAS  Google Scholar 

  8. Bourre JM, Bonneil M, Clement M, Dumont O, Durand G, Lafont H, Nalbone G, Piciotti M (1993) Function of dietary polyunsaturated fatty acids in the nervous system. Prostaglandins Leukot Essent Fatty Acids 48: 5–15

    Article  PubMed  CAS  Google Scholar 

  9. Mead JF, Dhopeshwarkar GA (1971) Types of fatty acids in brain lipids, their derivation and function. Lipids, malnutrition & the developing brain. Ciba Found Symp 59–72

    Google Scholar 

  10. Nakamura MT, Cho HP, Xu J, Tang Z, Clarke SD (2001) Metabolism and functions of highly unsaturated fatty acids: An update. Lipids 36: 961–964

    Article  PubMed  CAS  Google Scholar 

  11. Roelcke U, Heil J (1993) Fatty acids as markers of the blood-cerebrospinal fluid barrier function in man. Funct Neurol 8: 189–192

    PubMed  CAS  Google Scholar 

  12. Serhan CN, Clish CB, Brannon J, Colgan SP, Chiang N, Gronert K (2000) Novel functional sets of lipid-derived mediators with anti-inflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal anti-inflammatory drugs and transcellular processing. J Exp Med 192: 1197–1204

    Article  PubMed  CAS  Google Scholar 

  13. Uauy R, Peirano P, Hoffman D, Mena P, Birch D, Birch E (1996) Role of essential fatty acids in the function of the developing nervous system. Lipids 31 (Suppl): S167–S176

    Article  PubMed  CAS  Google Scholar 

  14. Bezard J, Blond JP, Bernard A, Clouet P (1994) The metabolism and availability of essential fatty acids in animal and human tissues. Reprod Nutr Dev 34: 539–568

    Article  PubMed  CAS  Google Scholar 

  15. Sprecher H (1981) Biochemistry of essential fatty acids. Prog Lipid Res 20: 13–22

    Article  PubMed  CAS  Google Scholar 

  16. Moore SA, Yoder E, Spector AA (1990) Role of the blood-brain barrier in the formation of long-chain omega-3 and omega-6 fatty acids from essential fatty acid precursors. J Neurochem 55: 391–402

    Article  PubMed  CAS  Google Scholar 

  17. Bazan HE, Careaga MM, Sprecher H, Bazan NG (1982) Chain elongation and desaturation of eicosapentaenoate to docosahexaenoate and phospholipid labeling in the rat retina in vivo. Biochim Biophys Acta 712: 123–128

    Article  PubMed  CAS  Google Scholar 

  18. Buzzi M, Henderson RJ, Sargent JR (1996) The desaturation and elongation of linolenic acid and eicosapentaenoic acid by hepatocytes and liver microsomes from rainbow trout, Oncorhynchus mykiss, fed diets containing fish oil or olive oil. Biochim Biophys Acta 1299: 235–244

    Article  PubMed  Google Scholar 

  19. Cook HW, Byers DM, Palmer FB, Spence MW, Rakoff H, Duval SM, Emken EA (1991) Alternate pathways in the desaturation and chain elongation of linolenic acid, 18: 3(n-3), in cultured glioma cells. J Lipid Res 32: 1265–1273

    PubMed  CAS  Google Scholar 

  20. Rubin D, Laposata M (1992) Cellular interactions between n-6 and n-3 fatty acids: A mass analysis of fatty acid elongation/desaturation, distribution among complex lipids, and conversion to eicosanoids. J Lipid Res 33: 1431–1440

    PubMed  CAS  Google Scholar 

  21. Singer P, Berger I, Wirth M, Godicke W, Jaeger W, Voigt S (1986) Slow desaturation and elongation of linoleic and alpha-linolenic acids as a rationale of eicosapentaenoic acid-rich diet to lower blood pressure and serum lipids in normal, hypertensive and hyperlipemic subjects. Prostaglandins Leukot Med 24: 173–193

    Article  PubMed  CAS  Google Scholar 

  22. Fonteh AN, Bass DA, Marshall LA, Seeds M, Samet JM, Chilton FH (1994) Evidence that secretory phospholipase A2 plays a role in arachidonic acid release and eicosanoid biosynthesis by mast cells. J Immunol 152: 5438–5446

    PubMed  CAS  Google Scholar 

  23. Hurt-Camejo E, Camejo G, Peilot H, Oorni K, Kovanen P (2001) Phospholipase A2 in vascular disease. Circ Res 89: 298–304

    Article  PubMed  CAS  Google Scholar 

  24. Balsinde J, Balboa MA, Insel PA, Dennis EA (1999) Regulation and inhibition of phospholipase A2. Annu Rev Pharmacol Toxicol 39: 175–189

    Article  PubMed  CAS  Google Scholar 

  25. Samuelsson B, Funk CD (1989) Enzymes involved in the biosynthesis of leukotriene B4. J Biol Chem 264: 19469–19472

    PubMed  CAS  Google Scholar 

  26. Samuelsson B (2000) The discovery of the leukotrienes. Am J Respir Crit Care Med 161: S2–S6

    PubMed  CAS  Google Scholar 

  27. Serhan CN, Nicolaou KC, Webber SE, Veale CA, Haeggstrom J, Puustinen TJ, Samuelsson B (1987) Stereochemistry and biosynthesis of lipoxins. Adv Prostaglandin Thromboxane Leukot Res 17A: 90–93

    PubMed  CAS  Google Scholar 

  28. DeWitt DL, el Harith EA, Smith WL (1989) Molecular cloning of prostaglandin G/H synthase. Adv Prostaglandin Thromboxane Leukot Res 19: 454–457

    Google Scholar 

  29. Smith WL, DeWitt DL, Garavito RM (2000) Cyclo-oxygenases: Structural, cellular, and molecular biology. Annu Rev Biochem 69: 145–182

    Article  PubMed  CAS  Google Scholar 

  30. Smith WL, Meade EA, DeWitt DL (1994) Interactions of PGH synthase isozymes-1 and -2 with NSAIDs. Ann NY Acad Sci 744: 50–57

    Article  PubMed  CAS  Google Scholar 

  31. Smith WL, Lands WE (1972) Oxygenation of unsaturated fatty acids by soybean lipoxygenase. J Biol Chem 247: 1038–1047

    PubMed  CAS  Google Scholar 

  32. Chilton FH, Patel M, Fonteh AN, Hubbard WC, Triggiani M (1993) Dietary n-3 fatty acid effects on neutrophil lipid composition and mediator production. Influence of duration and dosage. J Clin Invest 91: 115–122

    Article  PubMed  CAS  Google Scholar 

  33. Heller A, Koch T, Schmeck J, van Ackern K (1998) Lipid mediators in inflammatory disorders. Drugs 55: 487–496

    Article  PubMed  CAS  Google Scholar 

  34. Serhan CN, Clish CB, Brannon J, Colgan SP, Gronert K, Chiang N (2000) Anti-microinflammatory lipid signals generated from dietary N-3 fatty acids via cyclooxygenase-2 and transcellular processing: A novel mechanism for NSAID and N-3 PUFA therapeutic actions. J Physiol Pharmacol 51: 643–654

    PubMed  CAS  Google Scholar 

  35. Sperling RI (1991) Dietary omega-3 fatty acids: Effects on lipid mediators of inflammation and rheumatoid arthritis. Rheum Dis Clin North Am 17: 373–389

    PubMed  CAS  Google Scholar 

  36. Sperling RI, Robin JL, Kylander KA, Lee TH, Lewis RA, Austen KF (1987) The effects of N-3 polyunsaturated fatty acids on the generation of platelet-activating factor-acether by human monocytes. J Immunol 139: 4186–4191

    PubMed  CAS  Google Scholar 

  37. Montine TJ, Beal MF, Cudkowicz ME, O’Donnell H, Margolin RA, McFarland L, Bachrach AF, Zackert WE, Roberts LJ, Morrow JD (1999) Increased CSF F2-isoprostane concentration in probable AD. Neurology 52: 562–565

    Article  PubMed  CAS  Google Scholar 

  38. Morrow JD, Awad JA, Boss HJ, Blair IA, Roberts LJ (1992) Non-cyclo-oxygenase-derived prostanoids (F2-isoprostanes) are formed in situ on phospholipids. Proc Natl Acad Sci USA 89: 10721–10725

    Article  PubMed  CAS  Google Scholar 

  39. Roberts LJ, Brame CJ, Chen Y, Morrow JD (1999) Novel eicosanoids. Isoprostanes and related compounds. Methods Mol Biol 120: 257–285

    PubMed  CAS  Google Scholar 

  40. Blackburn GL (1992) Nutrition and inflammatory events: Highly unsaturated fatty acids (omega-3 vs omega-6) in surgical injury. Proc Soc Exp Biol Med 200: 183–188

    PubMed  CAS  Google Scholar 

  41. Calder PC (2001) Polyunsaturated fatty acids, inflammation, and immunity. Lipids 36: 1007–1024

    Article  PubMed  CAS  Google Scholar 

  42. Duchen K, Bjorksten B (2001) Polyunsaturated n-3 fatty acids and the development of atopic disease. Lipids 36: 1033–1042

    Article  PubMed  CAS  Google Scholar 

  43. Fan YY, Chapkin RS (1998) Importance of dietary gamma-linolenic acid in human health and nutrition. J Nutr 128: 1411–1414

    PubMed  CAS  Google Scholar 

  44. Geerling BJ, Houwelingen AC, Badart-Smook A, Stockbrugger RW, Brummer RJ (1999) Fat intake and fatty acid profile in plasma phospholipids and adipose tissue in patients with Crohn’s disease, compared with controls. Am J Gastroenterol 94: 410–417

    Article  PubMed  CAS  Google Scholar 

  45. Gibson RA (1988) The effect of diets containing fish and fish oils on disease risk factors in humans. Aust N Z J Med 18: 713–722

    Article  PubMed  CAS  Google Scholar 

  46. Horrocks LA, Yeo YK (1999) Health benefits of docosahexaenoic acid (DHA). Pharmacol Res 40: 211–225

    Article  PubMed  CAS  Google Scholar 

  47. Kankaanpaa P, Sutas Y, Salminen S, Lichtenstein A, Isolauri E (1999) Dietary fatty acids and allergy. Ann Med 31: 282–287

    Article  PubMed  CAS  Google Scholar 

  48. Petroni A, Bertagnolio B, La Spada P, Blasevich M, Papini N, Govoni S, Rimoldi M, Galli C (1998) The beta-oxidation of arachidonic acid and the synthesis of docosa-hexaenoic acid are selectively and consistently altered in skin fibroblasts from three Zellweger patients versus X-adrenoleukodystrophy, Alzheimer and control subjects. Neurosci Lett 250: 145–148

    Article  PubMed  CAS  Google Scholar 

  49. Gibson RA, Makrides M (2001) Long-chain polyunsaturated fatty acids in breast milk: Are they essential? Adv Exp Med Biol 501: 375–383

    Article  PubMed  CAS  Google Scholar 

  50. Hamosh M (1995) Lipid metabolism in pediatric nutrition. Pediatr Clin North Am 42: 839–859

    PubMed  CAS  Google Scholar 

  51. Uauy R, Birch E, Birch D, Peirano P (1992) Visual and brain function measurements in studies of n-3 fatty acid requirements of infants. J Pediatr 120: S168–S180

    Article  PubMed  CAS  Google Scholar 

  52. Sinclair AJ, Murphy KJ, Li D (2000) Marine lipids: Overview “news insights and lipid composition of Lyprinol”. Allerg Immunol (Paris) 32: 261–271

    CAS  Google Scholar 

  53. Galle AM, Joseph M, Demandre C, Guerche P, Dubacq JP, Oursel A, Mazliak P, Pelletier G, Kader JC (1993) Biosynthesis of gamma-linolenic acid in developing seeds of borage, Borago officinalis L. Biochim Biophys Acta 1158: 52–58

    Article  CAS  Google Scholar 

  54. Garcia-Maroto F, Garrido-Cardenas JA, Rodriguez-Ruiz J, Vilches-Ferron M, Adam AC, Polaina J, Alonso DL (2002) Cloning and molecular characterization of the delta 6- desaturase from two echium plant species: production of GLA by heterologous expression in yeast and tobacco. Lipids 37: 417–426

    Article  PubMed  CAS  Google Scholar 

  55. Alsted AL, Hoy CE (1992) Fatty acid profiles of brain phospholipid subclasses of rats fed n-3 polyunsaturated fatty acids of marine or vegetable origin. A two generation study. Biochim Biophys Acta 1125: 237–244

    Article  PubMed  CAS  Google Scholar 

  56. Sayanova O, Smith MA, Lapinskas P, Stobart AK, Dobson G, Christie WW, Shewry PR, Napier JA (1997) Expression of a borage desaturase cDNA containing an N-terminal cytochrome b5 domain results in the accumulation of high levels of delta6-desaturated fatty acids in transgenic tobacco. Proc Natl Acad Sci USA 94: 4211–4216

    Article  PubMed  CAS  Google Scholar 

  57. Aki T, Shimada Y, Inagaki K, Higashimoto H, Kawamoto S, Shigeta S, Ono K, Suzuki O (1999) Molecular cloning and functional characterization of rat delta-6 fatty acid desaturase. Biochem Biophys Res Commun 255: 575–579

    Article  PubMed  CAS  Google Scholar 

  58. de Antueno RJ, Knickle LC, Smith H, Elliot ML, Allen SJ, Nwaka S, Winther MD (2001) Activity of human Delta 5 and Delta 6 desaturases on multiple n-3 and n-6 polyunsaturated fatty acids. FEBS Lett 509: 77–80

    Article  PubMed  Google Scholar 

  59. Miller CC, Ziboh VA (1988) Gammalinolenic acid-enriched diet alters cutaneous eicosanoids. Biochem Biophys Res Commun 154: 967–974

    Article  PubMed  CAS  Google Scholar 

  60. Singer P, Jaeger W, Berger I, Barleben H, Wirth M, Richter-Heinrich E, Voigt S, Godicke W (1990) Effects of dietary oleic, linoleic and alpha-linolenic acids on blood pressure, serum lipids, lipoproteins and the formation of eicosanoid precursors in patients with mild essential hypertension. J Hum Hypertens 4: 227–233

    PubMed  CAS  Google Scholar 

  61. Ziboh VA, Fletcher MP (1992) Dose-response effects of dietary gamma-linolenic acid-enriched oils on human polymorphonuclear-neutrophil biosynthesis of leukotriene B4. Am J Clin Nutr 55: 39–45

    PubMed  CAS  Google Scholar 

  62. Barham JB, Edens MB, Fonteh AN, Johnson MM, Easter L, Chilton FH (2000) Addition of eicosapentaenoic acid to gamma-linolenic acid-supplemented diets prevents serum arachidonic acid accumulation in humans. J Nutr 130: 1925–1931

    PubMed  CAS  Google Scholar 

  63. Chilton L, Surette ME, Swan DD, Fonteh AN, Johnson MM, Chilton FH (1996) Metabolism of gammalinolenic acid in human neutrophils. J Immunol 156: 2941–2947

    PubMed  Google Scholar 

  64. Johnson MM, Swan DD, Surette ME, Stegner J, Chilton T, Fonteh AN, Chilton FH (1997) Dietary supplementation with gamma-linolenic acid alters fatty acid content and eicosanoid production in healthy humans. J Nutr 127: 1435–1444

    PubMed  CAS  Google Scholar 

  65. Johnson MM, Vaughn B, Triggiani M, Swan DD, Fonteh AN, Chilton FH (1999) Role of arachidonyl triglycerides within lipid bodies in eicosanoid formation by human polymorphonuclear cells. Am J Respir Cell Mol Biol 21: 253–258

    PubMed  CAS  Google Scholar 

  66. Frenoux JM, Prost ED, Belleville JL, Prost JL (2001) A polyunsaturated fatty acid diet lowers blood pressure and improves antioxidant status in spontaneously hypertensive rats. J Nutr 131: 39–45

    PubMed  CAS  Google Scholar 

  67. Gerster H (1995) The use of n-3 PUFAs (fish oil) in enteral nutrition. Int J Vitam Nutr Res 65: 3–20

    PubMed  CAS  Google Scholar 

  68. Guichardant M, Traitler H, Spielmann D, Sprecher H, Finot PA (1993) Stearidonic acid, an inhibitor of the 5-lipoxygenase pathway. A comparison with timnodonic and dihomogammalinolenic acid. Lipids 28: 321–324

    Article  PubMed  CAS  Google Scholar 

  69. Harel Z, Riggs S, Vaz R, White L, Menzies G (2001) Omega-3 polyunsaturated fatty acids in adolescents: Knowledge and consumption. J Adolesc Health 28: 10–15

    Article  PubMed  CAS  Google Scholar 

  70. Lewis NM, Seburg S, Flanagan NL (2000) Enriched eggs as a source of N-3 polyunsaturated fatty acids for humans. Poult Sci 79: 971–974

    PubMed  CAS  Google Scholar 

  71. Mantzioris E, Cleland LG, Gibson RA, Neumann MA, Demasi M, James MJ (2000) Biochemical effects of a diet containing foods enriched with n-3 fatty acids. Am J Clin Nutr 72: 42–48

    PubMed  CAS  Google Scholar 

  72. Shoda R, Matsueda K, Yamato S, Umeda N (1995) Therapeutic efficacy of N-3 polyunsaturated fatty acid in experimental Crohn’s disease. J Gastroenterol 30 (Suppl) 8: 98–101

    Google Scholar 

  73. Sperling RI (1995) Eicosanoids in rheumatoid arthritis. Rheum Dis Clin North Am 21: 741–758

    PubMed  CAS  Google Scholar 

  74. Zurier RB, Rossetti RG, Jacobson EW, DeMarco DM, Liu NY, Temming JE, White BM, Laposata M (1996) gamma-Linolenic acid treatment of rheumatoid arthritis. A randomized, placebo-controlled trial. Arthritis Rheum 39: 1808–1817

    Article  PubMed  CAS  Google Scholar 

  75. Sprecher H (1996) New advances in fatty-acid biosynthesis. Nutrition 12: S5–S7

    PubMed  CAS  Google Scholar 

  76. Sprecher H, Chen Q (1999) Polyunsaturated fatty acid biosynthesis: A microsomal-peroxisomal process. Prostaglandins Leukot Essent Fatty Acids 60: 317–321

    Article  PubMed  CAS  Google Scholar 

  77. Gronn M, Christensen E, Hagve TA, Christophersen BO (1990) The Zellweger syndrome: Deficient conversion of docosahexaenoic acid (22: 6(n-3)) to eicosapentaenoic acid (20: 5(n-3)) and normal delta 4-desaturase activity in cultured skin fibroblasts. Biochim Biophys Acta 1044: 249–254

    Article  PubMed  CAS  Google Scholar 

  78. Wanders RJ, van Roermund CW, van Wijland MJ, Schutgens RB, Heikoop J, Van den BH, Schram AW, Tager JM (1987) Peroxisomal fatty acid beta-oxidation in relation to the accumulation of very long chain fatty acids in cultured skin fibroblasts from patients with Zellweger syndrome and other peroxisomal disorders. J Clin Invest 80: 1778–1783

    Article  PubMed  CAS  Google Scholar 

  79. Rapoport SI, Chang MC, Spector AA (2001) Delivery and turnover of plasma-derived essential PUFAs in mammalian brain. J Lipid Res 42: 678–685

    PubMed  CAS  Google Scholar 

  80. Leonard AE, Kelder B, Bobik EG, Chuang LT, Lewis CJ, Kopchick JJ, Mukerji P, Huang YS (2002) Identification and expression of mammalian long-chain PUFA elongation enzymes. Lipids 37: 733–740

    Article  PubMed  CAS  Google Scholar 

  81. Parker-Barnes JM, Das T, Bobik E, Leonard AE, Thurmond JM, Chaung LT, Huang YS, Mukerji P (2000) Identification and characterization of an enzyme involved in the elongation of n-6 and n-3 polyunsaturated fatty acids. Proc Natl Acad Sci USA 97: 8284–8289

    Article  PubMed  CAS  Google Scholar 

  82. Chuang LT, Leonard AE, Liu JW, Mukerji P, Bray TM, Huang YS (2001) Inhibitory effect of conjugated linoleic acid on linoleic acid elongation in transformed yeast with human elongase. Lipids 36: 1099–1103

    Article  PubMed  CAS  Google Scholar 

  83. Matsuzaka T, Shimano H, Yahagi N, Yoshikawa T, Amemiya-Kudo M, Hasty AH, Okazaki H, Tamura Y, Iizuka Y, Ohashi K et al (2002) Cloning and characterization of a mammalian fatty acyl-CoA elongase as a lipogenic enzyme regulated by SREBPs. J Lipid Res 43: 911–920

    PubMed  CAS  Google Scholar 

  84. Moon YA, Shah NA, Mohapatra S, Warrington JA, Horton JD (2001) Identification of a mammalian long chain fatty acyl elongase regulated by sterol regulatory element-binding proteins. J Biol Chem 276: 45358–45366

    Article  PubMed  CAS  Google Scholar 

  85. Zank TK, Zahringer U, Lerchl J, Heinz E (2000) Cloning and functional expression of the first plant fatty acid elongase specific for Delta(6)-polyunsaturated fatty acids. Biochem Soc Trans 28: 654–658

    Article  PubMed  CAS  Google Scholar 

  86. Biagi PL, Hrelia S, Stefanini GF, Zunarelli P, Bordoni A (1990) Delta-6-desaturase activity of human liver microsomes from patients with different types of liver injury. Prostaglandins Leukot Essent Fatty Acids 39: 39–42

    Article  PubMed  CAS  Google Scholar 

  87. Cho HP, Nakamura M, Clarke SD (1999) Cloning, expression, and fatty acid regulation of the human delta-5 desaturase. J Biol Chem 274: 37335–37339

    Article  PubMed  CAS  Google Scholar 

  88. de Antueno RJ, Allen SJ, Ponton A, Winther MD (2001) Activity and mRNA abundance of Delta-5 and Delta-6 fatty acid desaturases in two human cell lines. FEBS Lett 491: 247–251

    Article  PubMed  Google Scholar 

  89. Dias VC, Parsons HG (1995) Modulation in delta 9, delta 6, and delta 5 fatty acid desaturase activity in the human intestinal CaCo-2 cell line. J Lipid Res 36: 552–563

    PubMed  CAS  Google Scholar 

  90. Horrobin DF (1993) Fatty acid metabolism in health and disease: The role of delta-6desaturase. Am J Clin Nutr 57: 732S–736S

    PubMed  CAS  Google Scholar 

  91. Rodriguez A, Sarda P, Nessmann C, Boulot P, Leger CL, Descomps B (1998) Delta band delta 5-desaturase activities in the human fetal liver: Kinetic aspects. J Lipid Res 39: 1825–1832

    PubMed  CAS  Google Scholar 

  92. Sato M, Adan Y, Shibata K, Shoji Y, Sato H, Imaizumi K (2001) Cloning of rat delta 6-desaturase and its regulation by dietary eicosapentaenoic or docosahexaenoic acid. World Rev Nutr Diet 88: 196–199

    Article  PubMed  CAS  Google Scholar 

  93. Chambaz J, Ravel D, Manier MC, Pepin D, Mulliez N, Bereziat G (1985) Essential fatty acids interconversion in the human fetal liver. Biol Neonate 47: 136–140

    Article  PubMed  CAS  Google Scholar 

  94. Duffin KL, Obukowicz MG, Salsgiver WJ, Welsch DJ, Shieh C, Raz A, Needleman P (2001) Lipid remodeling in mouse liver and plasma resulting from delta 6 fatty acid desaturase inhibition. Lipids 36: 1203–1208

    Article  PubMed  CAS  Google Scholar 

  95. Leonard AE, Kelder B, Bobik EG, Chuang LT, Parker-Barnes JM, Thurmond JM, Kroeger PE, Kopchick JJ, Huang YS, Mukerji P (2000) cDNA cloning and characterization of human Delta 5-desaturase involved in the biosynthesis of arachidonic acid. Biochem J 347 Pt 3: 719–724

    Article  PubMed  CAS  Google Scholar 

  96. Melin T, Nilsson A (1997) Delta-6-desaturase and delta-5-desaturase in human Hep G2 cells are both fatty acid interconversion rate limiting and are up-regulated under essential fatty acid deficient conditions. Prostaglandins Leukot Essent Fatty Acids 56: 437–442

    Article  PubMed  CAS  Google Scholar 

  97. Rodriguez A, Sarda P, Boulot P, Leger CL, Descomps B (1999) Differential effect of Nethyl maleimide on delta 6-desaturase activity in human fetal liver toward fatty acids of the n-6 and n-3 series. Lipids 34: 23–30

    Article  PubMed  CAS  Google Scholar 

  98. Hrelia S, Lopez Jimenez JA, Bordoni A, Nvarro SZ, Horrobin DF, Rossi CA, Biagi PL (1995) Essential fatty acid metabolism in cultured rat cardiomyocytes in response to either N-6 or N-3 fatty acid supplementation. Biochem Biophys Res Commun 216: 11–19

    Article  PubMed  CAS  Google Scholar 

  99. Ramanadham S, Zhang S, Ma Z, Wohltmann M, Bohrer A, Hsu FF, Turk J (2002) Delta 6-, stearoyl CoA-, and Delta 5-desaturase enzymes are expressed in beta-cells and are altered by increases in exogenous PUFA concentrations. Biochim Biophys Acta 1580: 40–56

    Article  PubMed  CAS  Google Scholar 

  100. de Alaniz MJ, Marra CA (1992) Glucocorticoid and mineralocorticoid hormones depress liver delta 5 desaturase activity through different mechanisms. Lipids 27: 599–604

    Article  PubMed  Google Scholar 

  101. Horrobin DF (1981) Loss of delta-6-desaturase activity as a key factor in aging. Med Hypotheses 7: 1211–1220

    Article  PubMed  CAS  Google Scholar 

  102. Igal RA, Mandon EC, de GDI (1991) Abnormal metabolism of polyunsaturated fatty acids in adrenal glands of diabetic rats. Mol Cell Endocrinol77: 217–227

    Article  PubMed  CAS  Google Scholar 

  103. Nakada T, Kwee IL, Ellis WG (1990) Membrane fatty acid composition shows delta-6desaturase abnormalities in Alzheimer’s disease. Neuroreport 1: 153–155

    Article  PubMed  CAS  Google Scholar 

  104. Tollesson A, Frithz A, Berg A, Karlman G (1993) Essential fatty acids in infantile seborrheic dermatitis. J Am Acad Dermatol 28: 957–961

    Article  PubMed  CAS  Google Scholar 

  105. Innis SM, Dyer RA (2002) Brain astrocyte synthesis of docosahexaenoic acid from n-3 fatty acids is limited at the elongation of docosapentaenoic acid. J Lipid Res 43: 1529–1536

    Article  PubMed  CAS  Google Scholar 

  106. Reddy TS, Bazan NG (1985) Long-chain acyl CoA synthetase in microsomes from rat brain gray matter and white matter. Neurochem Res 10: 377–386

    Article  PubMed  CAS  Google Scholar 

  107. Uberti MA, Pierce J, Weis MT (2003) Molecular characterization of a rabbit long-chain fatty acyl CoA synthetase that is highly expressed in the vascular endothelium. Biochim Biophys Acta 1645: 193–204

    Article  PubMed  CAS  Google Scholar 

  108. Laposata M, Reich EL, Majerus PW (1985) Arachidonoyl-CoA synthetase. Separation from non-specific acyl-CoA synthetase and distribution in various cells and tissues. J Biol Chem 260: 11016–11020

    PubMed  CAS  Google Scholar 

  109. Neufeld EJ, Sprecher H, Evans RW, Majerus PW (1984) Fatty acid structural requirements for activity of arachidonoyl-CoA synthetase. J Lipid Res 25: 288–293

    PubMed  CAS  Google Scholar 

  110. Wilson DB, Prescott SM, Majerus PW (1982) Discovery of an arachidonoyl coenzyme A synthetase in human platelets. J Biol Chem 257:510–3515

    Google Scholar 

  111. Cao Y, Traer E, Zimmerman GA, McIntyre TM, Prescott SM (1998) Cloning, expression, and chromosomal localization of human long-chain fatty acid-CoA ligase 4 (FACL4). Genomics 49: 327–330

    Article  PubMed  CAS  Google Scholar 

  112. Vessey DA, Lau E, Kelley M, Warren RS (2003) Isolation, sequencing, and expression of a cDNA for the HXM-A form of xenobiotic/medium-chain fatty acid: CoA ligase from human liver mitochondria. J Biochem Mot Toxicol 17: 1–6

    Article  CAS  Google Scholar 

  113. Kim JH, Lewin TM, Coleman RA (2001) Expression and characterization of recombinant rat Acyl-CoA synthetases 1,4, and 5. Selective inhibition by triacsin C and thiazolidinediones. J Biol Chem 276: 24667–24673

    Article  PubMed  CAS  Google Scholar 

  114. Minekura H, Kang MJ, Inagaki Y, Suzuki H, Sato H, Fujino T, Yamamoto TT (2001) Genomic organization and transcription units of the human acyl-CoA synthetase 3 gene. Gene 278: 185–192

    Article  PubMed  CAS  Google Scholar 

  115. Oikawa E, Iijima H, Suzuki T, Sasano H, Sato H, Kamataki A, Nagura H, Kang MJ, Fujino T, Suzuki H et al (1998) A novel acyl-CoA synthetase, ACS5, expressed in intestinal epithelial cells and proliferating preadipocytes. J Biochem (Tokyo) 124: 679–685

    Article  CAS  Google Scholar 

  116. Tang PZ, Tsai-Morris CH, Dufau ML (2001) Cloning and characterization of a hormonally regulated rat long chain acyl-CoA synthetase. Proc Natl Acad Sci USA 98: 6581–6586

    Article  PubMed  CAS  Google Scholar 

  117. Cao Y, Murphy KJ, McIntyre TM, Zimmerman GA, Prescott SM (2000) Expression of fatty acid-CoA ligase 4 during development and in brain. FEBS Lett 467: 263–267

    Article  PubMed  CAS  Google Scholar 

  118. Cho YY, Kang MJ, Ogawa S, Yamashita Y, Fujino T, Yamamoto TT (2000) Regulation by adrenocorticotropic hormone and arachidonate of the expression of acyl-CoA synthetase 4, an arachidonate-preferring enzyme expressed in steroidogenic tissues. Biochem Biophys Res Commun 274: 741–745

    Article  PubMed  CAS  Google Scholar 

  119. Mandon EC, de GDI, Brenner RR (1988) Long-chain fatty acyl-CoA synthetase of rat adrenal microsomes. Effect of ACTH and epinephrine. Mol Cell Endocrinol 56: 123–131

    Article  PubMed  CAS  Google Scholar 

  120. Singh H, Derwas N, Poulos A (1987) Beta-oxidation of very-long-chain fatty acids and their coenzyme A derivatives by human skin fibroblasts. Arch Biochem Biophys 254: 526–533

    Article  PubMed  CAS  Google Scholar 

  121. Tol VA (1975) Aspects of long-chain acyl-COA metabolism. Mol Cell Biochem 7: 19–31

    Article  PubMed  CAS  Google Scholar 

  122. Iwai N, Mannami T, Tomoike H, Ono K, Iwanaga Y (2003) An Acyl-CoA Synthetase Gene Family in Chromosome 16p12 May Contribute to Multiple Risk Factors. Hypertension 41: 1041–1046

    Article  PubMed  CAS  Google Scholar 

  123. Shimabukuro M, Zhou YT, Levi M, Unger RH (1998) Fatty acid-induced beta cell apoptosis: A link between obesity and diabetes. Proc Nati Acad Sci USA 95: 2498–2502

    Article  CAS  Google Scholar 

  124. Shimomura I, Tokunaga K, Jiao S, Funahashi T, Keno Y, Kobatake T, Kotani K, Suzuki H, Yamamoto T, Tarui S et al (1992) Marked enhancement of acyl-CoA synthetase activity and mRNA, paralleled to lipoprotein lipase mRNA, in adipose tissues of Zucker obese rats (fa/fa). Biochim Biophys Acta 1124: 112–118

    Article  PubMed  CAS  Google Scholar 

  125. Antinozzi PA, Segall L, Prentki M, McGarry JD, Newgard CB (1998) Molecular or pharmacologic perturbation of the link between glucose and lipid metabolism is without effect on glucose-stimulated insulin secretion. A re-evaluation of the long-chain acylCoA hypothesis. J Biol Chem 273: 16146–16154

    Article  PubMed  CAS  Google Scholar 

  126. Fulgencio JP, Kohl C, Girard J, Pegorier JP (1996) Troglitazone inhibits fatty acid oxidation and esterification, and gluconeogenesis in isolated hepatocytes from starved rats. Diabetes 45: 1556–1562

    Article  PubMed  CAS  Google Scholar 

  127. Li J, Wurtman RJ (1999) Heterogeneous long chain acyl-CoA synthetases control distribution of individual fatty acids in newly-formed glycerolipids of neuronal cells undergoing neurite outgrowth. Neurochem Res 24: 739–750

    Article  PubMed  CAS  Google Scholar 

  128. Piccini M, Vitelli F, Bruttini M, Pober BR, Jonsson JJ, Villanova M, Zollo M, Borsani G, Ballabio A, Renieri A (1998) FACL4, a new gene encoding long-chain acyl-CoA synthetase 4, is deleted in a family with Alport syndrome, elliptocytosis, and mental retardation. Genomics 47: 350–358

    Article  PubMed  CAS  Google Scholar 

  129. Yamada T, Shinnoh N, Kondo A, Uchiyama A, Shimozawa N, Kira J, Kobayashi T (2000) Very-long-chain fatty acid metabolism in adrenoleukodystrophy protein-deficient mice. Cell Biochem Biophys 32: 239–246

    Article  PubMed  CAS  Google Scholar 

  130. Carter JR, Kennedy EP (1966) Enzymatic synthesis of cytidine diphosphate diglyceride. J Lipid Res 7: 678–683

    PubMed  CAS  Google Scholar 

  131. Colodzin M, Kennedy EP (1965) Biosynthesis of diphosphoinositide in brain. J Biol Chem 240: 3771–3780

    PubMed  CAS  Google Scholar 

  132. Husbands DR, Lands WE (1968) Properties of glycerol phosphate acyl transferase from pigeon liver particles. Biochem J 110: 50P–51P

    PubMed  CAS  Google Scholar 

  133. Hill EE, Lands WE (1968) Incorporation of long-chain and polyunsaturated acids into phosphatidate and phosphatidylcholine. Biochim Biophys Acta 152: 645–648

    Article  PubMed  CAS  Google Scholar 

  134. Lands WE (2000) Stories about acyl chains. Biochim Biophys Acta 1483: 1–14

    Article  PubMed  CAS  Google Scholar 

  135. Fonteh AN, Chilton FH (1993) Mobilization of different arachidonate pools and their roles in the generation of leukotrienes and free arachidonic acid during immunologic activation of mast cells. J Immunol 150: 563–570

    PubMed  CAS  Google Scholar 

  136. Masuzawa Y, Sugiura T, Sprecher H, Waku K (1989) Selective acyl transfer in the reacylation of brain glycerophospholipids. Comparison of three acylation systems for 1- alk-1’-enylglycero-3-phosphoethanolamine, 1-acylglycero-3-phosphoethanolamine and 1-acylglycero-3-phosphocholine in rat brain microsomes Biochim Biophys Acta 1005: 1–12

    Article  PubMed  CAS  Google Scholar 

  137. Ojima A, Nakagawa Y, Sugiura T, Masuzawa Y, Waku K (1987) Selective transacylation of 1-O-alkylglycerophosphoethanolamine by docosahexaenoate and arachidonate in rat brain microsomes. J Neurochem 48: 1403–1410

    Article  PubMed  CAS  Google Scholar 

  138. Sugiura T, Kudo N, Ojima T, Mabuchi-Itoh K, Yamashita A, Waku K (1995) Coenzyme A-dependent cleavage of membrane phospholipids in several rat tissues: ATP-independent acyl-CoA synthesis and the generation of lysophospholipids. Biochim Biophys Acta 1255: 167–176

    Article  PubMed  Google Scholar 

  139. Sugiura T, Masuzawa Y, Waku K (1985) Transacylation of 1-O-alkyl-SN-glycero-3- phosphocholine (lyso platelet-activating factor) and 1-O-alkenyl-SN-glycero-3-phosphoethanolamine with docosahexaenoic acid (22: 6 omega 3). Biochem Biophys Res Commun 133: 574–580

    Article  PubMed  CAS  Google Scholar 

  140. Sugiura T, Masuzawa Y, Nakagawa Y, Waku K (1987) Transacylation of lyso platelet-activating factor and other lysophospholipids by macrophage microsomes. Distinct donor and acceptor selectivities. J Biol Chem 262: 1199–1205

    PubMed  CAS  Google Scholar 

  141. Chilton FH, Fonteh AN, Surette ME, Triggiani M, Winkler JD (1996) Control of arachidonate levels within inflammatory cells. Biochim Biophys Acta 1299: 1–15

    Article  PubMed  Google Scholar 

  142. Chilton FH, Fonteh AN, Sung CM, Hickey DM, Torphy TJ, Mayer RJ, Marshall LA, Heravi JD, Winkler JD (1995) Inhibitors of CoA-independent transacylase block the movement of arachidonate into 1-ether-linked phospholipids of human neutrophils. Biochemistry 34: 5403–5410

    Article  PubMed  CAS  Google Scholar 

  143. Surette ME, Winkler JD, Fonteh AN, Chilton FH (1996) Relationship between arachidonate--phospholipid remodeling and apoptosis. Biochemistry 35: 9187–9196

    Article  PubMed  CAS  Google Scholar 

  144. Winkler JD, Sung CM, Bennett CF, Chilton FH (1991) Characterization of CoA-independent transacylase activity in U937 cells. Biochim Biophys Acta 1081: 339–346

    Article  PubMed  CAS  Google Scholar 

  145. Fonteh AN, LaPorte T, Swan D, McAlexander MA (2001) A decrease in remodeling accounts for the accumulation of arachidonic acid in murine mast cells undergoing apoptosis. J Biol Chem 276: 1439–1449

    Article  PubMed  CAS  Google Scholar 

  146. Fonteh AN, Chilton FH (1992) Rapid remodeling of arachidonate from phosphatidylcholine to phosphatidylethanolamine pools during mast cell activation. J Immunol 148: 1784–1791

    PubMed  CAS  Google Scholar 

  147. Obukowicz MG, Raz A, Pyla PD, Rico JG, Wendling JM, Needleman P (1998) Identification and characterization of a novel delta 6/delta 5 fatty acid desaturase inhibitor as a potential anti-inflammatory agent. Biochem Pharmacol 55: 1045–1058

    Article  PubMed  CAS  Google Scholar 

  148. Obukowicz MG, Welsch DJ, Salsgiver WJ, Martin-Berger CL, Chinn KS, Duffin KL, Raz A, Needleman P (1998) Novel, selective delta 6 or delta 5 fatty acid desaturase inhibitors as anti-inflammatory agents in mice. J Pharmacol Exp Ther 287: 157–166

    PubMed  CAS  Google Scholar 

  149. Omura S, Tomoda H, Xu QM, Takahashi Y, Iwai Y (1986) Triacsins, new inhibitors of acyl-CoA synthetase produced by Streptomyces sp. J Antibiot (Tokyo) 39: 1211–1218

    Article  CAS  Google Scholar 

  150. Hartman EJ, Omura S, Laposata M (1989) Triacsin C: A differential inhibitor of arachidonoyl-CoA synthetase and non-specific long chain acyl-CoA synthetase. Prostaglandins 37: 655–671

    Article  PubMed  CAS  Google Scholar 

  151. Igal RA, Wang P, Coleman RA (1997) Triacsin C blocks de novo synthesis of glycerolipids and cholesterol esters but not recycling of fatty acid into phospholipid: Evidence for functionally separate pools of acyl-CoA. Biochem J 324 (Pt 2): 529–534

    PubMed  CAS  Google Scholar 

  152. Tomoda H, Igarashi K, Omura S (1987) Inhibition of acyl-CoA synthetase by triacsins. Biochim Biophys Acta 921: 595–598

    Article  PubMed  CAS  Google Scholar 

  153. Kasuya F, Hiasa M, Kawai Y, Igarashi K, Fukui M (2001) Inhibitory effect of quinolone antimicrobial and non-steroidal anti-inflammatory drugs on a medium chain acyl-CoA synthetase. Biochem Pharmacol 62: 363–367

    Article  PubMed  CAS  Google Scholar 

  154. Fonteh AN, Samet JM, Chilton FH (1995) Regulation of arachidonic acid, eicosanoid, and phospholipase A2 levels in murine mast cells by recombinant stem cell factor. J Clin Invest 96: 1432–1439

    Article  PubMed  CAS  Google Scholar 

  155. Laposata M, Kaiser SL, Capriotti AM (1988) Icosanoid production can be decreased without alterations in cellular arachidonate content or enzyme activities required for arachidonate release and icosanoid synthesis. J Biol Chem 263: 3266–3273

    PubMed  CAS  Google Scholar 

  156. Winkler JD, Sung CM, Chabot-Flecher M, Griswold DE, Marshall LA, Chilton FH, Bondinell W, Mayer RJ (1998) Beta-lactams SB 212047 and SB 216754 are irreversible, time-dependent inhibitors of coenzyme A-independent transacylase. Mol Pharmacol 53: 322–329

    PubMed  CAS  Google Scholar 

  157. Winkler JD, Fonteh AN, Sung CM, Heravi JD, Nixon AB, Chabot-Fletcher M, Griswold D, Marshall LA, Chilton FH (1995) Effects of CoA-independent transacylase inhibitors on the production of lipid inflammatory mediators. J Pharmacol Exp Ther 274: 1338–1347

    PubMed  CAS  Google Scholar 

  158. Winkler JD, Fonteh AN, Sung CM, Huang L, Chabot-Fletcher M, Marshall LA, Chilton FH (1995) Inhibition of CoA-independent transacylase reduces inflammatory lipid mediators. Adv Prostaglandin Thromboxane Leukot Res 23: 89–91

    PubMed  CAS  Google Scholar 

  159. Winkler JD, Eris T, Sung CM, Chabot-Fletcher M, Mayer RJ, Surette ME, Chilton FH (1996) Inhibitors of coenzyme A-independent transacylase induce apoptosis in human HL-60 cells. J Pharmacol Exp Ther 279: 956–966

    PubMed  CAS  Google Scholar 

  160. Fonteh AN (2002) Differential effects of arachidonoyl trifluoromethyl ketone on arachidonic acid release and lipid mediator biosynthesis by human neutrophils. Evidence for different arachidonate pools. Eur J Biochem 269: 3760–3770

    Article  PubMed  CAS  Google Scholar 

  161. Winkler JD, Sung CM, Hubbard WC, Chilton FH (1992) Evidence for different mechanisms involved in the formation of lyso platelet-activating factor and the calcium-dependent release of arachidonic acid from human neutrophils. Biochem Pharmacol 44: 2055–2066

    Article  PubMed  CAS  Google Scholar 

  162. Surette ME, Fonteh AN, Bernatchez C, Chilton FH (1999) Perturbations in the control of cellular arachidonic acid levels block cell growth and induce apoptosis in HL-60 cells. Carcinogenesis 20: 757–763

    Article  PubMed  CAS  Google Scholar 

  163. Trimboli AJ, Waite BM, Atsumi G, Fonteh AN, Namen AM, Clay CE, Kute TE, High KP, Willingham MC, Chilton FH (1999) Influence of coenzyme A-independent transacylase and cyclo-oxygenase inhibitors on the proliferation of breast cancer cells. Cancer Res 59: 6171–6177

    PubMed  CAS  Google Scholar 

  164. Ghomashchi F, Loo R, Balsinde J, Bartoli F, Apitz-Castro R, Clark JD, Dennis EA, Gelb MH (1999) Trifluoromethyl ketones and methyl fluorophosphonates as inhibitors of group IV and VI phospholipases A2: Structure-function studies with vesicle, micelle, and membrane assays. Biochim Biophys Acta 1420: 45–56

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this chapter

Cite this chapter

McAlexander, A.M., Barham, B.J., Johnson, M., Fonteh, A.N. (2004). Control of long chain polyunsaturated fatty acid levels and the role of inhibitors of incorporation and remodeling on the biosynthesis of lipid mediators. In: Fonteh, A.N., Wykle, R.L. (eds) Arachidonate Remodeling and Inflammation. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7848-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7848-7_6

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9594-1

  • Online ISBN: 978-3-0348-7848-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics