Advertisement

On Series Expansions of Hyperholomorphic Bq Functions

  • K. Gürlebeck
  • A. El-Sayed Ahmed
Chapter
Part of the Trends in Mathematics book series (TM)

Abstract

In the previous article 11, B q spaces of hyperholomorphic functions were studied and it was shown that these spaces form a scale of subspaces, all included in the hyperholomorphic Bloch space. Here, we study the problem if these inclusions within the scale and with respect to the Bloch space are strict. Main tool is the characterization of B q functions by the coefficients of certain series expansions.

Keywords

Quaternionic Analysis Bq-spaces 

Mathematics Subject Classification (2000)

Primary 30G35 Secondary 46E15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Anderson, J. Clunie and Ch. Pommerenke: On Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 12–37.MathSciNetzbMATHGoogle Scholar
  2. [2]
    R. Aulaskari, D. Girela and H. Wulan: Taylor coefficients and mean growth of the derivative of Q p functions, J. Math. Anal. Appl. 258, No.2 (2001), 415–428.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    R. Aulaskari and P. Lappan: Criteria for an analytic function to be Bloch and a harmonic or meromorphic function to be normal, Complex Analysis and its Applications (eds Y. Chung-Chun et al.), Pitman Research Notes in Mathematics 305, Longman (1994), 136–146.Google Scholar
  4. [4]
    R. Aulaskari, J. Xiao and R. Zhao: On subspaces and subsets of BMOA and UBC, Analysis 15 (1995), 101–121.MathSciNetzbMATHGoogle Scholar
  5. [5]
    F. Brackx, J.S.R. Chisholm and V. Soucek (eds.): Clifford analysis and its applications. Proceedings of the NATO advanced research workshop, Prague, Czech Republic, October 30—November 3, 2000. NATO Science Series II: Mathematics, Physics and Chemistry. 25. Dordrecht: Kluwer Academic Publishers. (2001).Google Scholar
  6. [6]
    F. Brackx, R. Delanghe and F. Sommen: Clifford Analysis,Pitman Research Notes in Math., Boston, London, Melbourne, 1982.Google Scholar
  7. [7]
    J. Cnops and R. Delanghe: Möbius invariant spaces in the unit ball, Applicable Analysis (1–2) 73 (2000), 45–64.MathSciNetGoogle Scholar
  8. [8]
    M. Essen, S. Janson, L. Peng and J. Xiao: Qspaces of several real variables, Indiana Univ. Math. J. 49, No.2 (2000), 575–615.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    M. Essen and J. Xiao:Q p spaces-a survey, Complex function spaces, Proceedings of the Summer School, Mekrijärvi, Finland, August 30 — September 3, 1999, Rep. Ser. Univ. Joensuu. 4 (2001), 11–60.MathSciNetGoogle Scholar
  10. [10]
    K. Gürlebeck and A. El-Sayed Ahmed. Integral norms for hyperholomorphic Bloch- functions in the unit ball of R 3, to appear in: Progress in Analysis,Proceedings of the 3rd International ISAAC Congress, Volume I, Editors H. Begehr, R. Gilbert, M.W. Wong, World Scientific, New Jersey, London, Singapore, Hong Kong, 2003Google Scholar
  11. [11]
    K. Gürlebeck and A. El-Sayed Ahmed. On B q spaces of hyperholomorphic functions and the Bloch space in R 3, to appear in the proceedings of the 9th ICFI DCAA held in Hanoi, 2001 (Kluwer Academic Publishers).Google Scholar
  12. [12]
    K. Gürlebeck, U. Kähler, M. Shapiro and L.M. Tovar: On Q p-spaces of quaternion-valued functions, Complex Variables Theory Appl. 39 (1999), 115–135.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    K. Gürlebeck and H.R. Malonek: On strict inclusions of weighted Dirichlet spaces of monogenic functions, Bull. Austral. Math. Soc. 64 (2001), 33–50.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    K. Gürlebeck and W. Sprößig: Quaternionic Analysis and elliptic boundary value problems, Int. Ser. Num. Math. 89, Springer Basel AG Basel, 1990.CrossRefGoogle Scholar
  15. [15]
    Gürlebeck, K. and W. Sprößig: Quaternionic and Clifford calculus for Engineers and Physicists, John Wiley &. Sons, Chichester, 1997.Google Scholar
  16. [16]
    V.V. Kravchenko and M.V. Shapiro: Integral representations for spatial models of mathematical physics, Pitman Research Notes in Mathematics Series 351 Harlow: Longman, 1996.Google Scholar
  17. [17]
    M. Malonek: Power series representation for monogenic functions in R m+1 based on a permutational product, Complex Variables Theory Appl. 15 (1990), 181–191.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    M. Mateljevic, M. Pavlovic: LP-behavior of power series with positive coefficients and Hardy spaces, Proc. Amer. Math. Soc. (2) 87 (1983), 309–316.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    J. Miao: A property of analytic functions with Hadamard gaps, Bull. Austral. Math. Soc. 45 (1992), 105–112.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    J. Ryan and W. Sprößig (eds.): Clifford algebras and their applications in mathematical physics. Papers of the 5th international conference, Ixtapa-Zihuatanejo, Mexico, June 27—July 4, 1999. Volume 2: Clifford analysis. Progress in Physics 19. Boston, MA: Birkhäuser. (2000).Google Scholar
  21. [21]
    K. Stroethoff: Besov-type characterisations for the Bloch space, Bull. Austral. Math. Soc. 39 (1989), 405–420.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    A. Sudbery: Quaternionic Analysis, Math. Proc. Cambr. Phil. Soc. 85 (1979), 199–225.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    J. Xiao: Holomorphic Q classes,Lecture Notes in Mathematics, Berlin, Springer, 2001.Google Scholar
  24. [24]
    R. Zhao: A general family of function spaces, Annales Academiae Scientiarum Fennicae. Series A I. Mathematica. Dissertationes. 105. Helsinki: Suomalainen Tiedeakatemia, (1996), 1–56.Google Scholar

Copyright information

© Springer Basel AG 2004

Authors and Affiliations

  • K. Gürlebeck
    • 1
  • A. El-Sayed Ahmed
    • 2
  1. 1.Institut für Mathematik und PhysikBauhaus-Universität WeimarWeimarGermany
  2. 2.Department of MathematicsSouth Valley University Faculty of ScienceSohagEgypt

Personalised recommendations