Advertisement

Monogenic Functions of Bounded Mean Oscillation in the Unit Ball

  • Swanhild Bernstein
Chapter
Part of the Trends in Mathematics book series (TM)

Abstract

Our goal is to generalize results for analytic functions of bounded mean oscillation (BMOA) in the unit circle to monogenic functions of bounded mean oscillation (BMOM) in the unit ball of \({{\mathbb{R}}^{n}} \) In particular we obtain the duality of BMOM l and the Hardy space of right monogenic functions H 1,r .

Mathematics Subject Classification (2000). Primary 30G35; Secondary 31B10, 32A37.

Keywords

Monogenic functions of bounded mean oscillation monogenic functions harmonic analysis 

Mathematics Subject Classification (2000)

Primary 30G35 Secondary 31B10, 32A37 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Axler, P. Bourdon, W. Ramey: Harmonic Function Theory, 2. Ed. Graduate Texts in Mathematics 137,Springer-Verlag New York, Berlin, Heidelberg, 2001.Google Scholar
  2. [2]
    R. Auleskari, J. Xiao and R. Zhao: On subspaces of BMOA and UBC, Analysis 15 (1995), 101–121. MathSciNetGoogle Scholar
  3. [3]
    A. Baernstein II.: Analytic functions of Bounded Mean Oscillation, in: Aspects of contemporary analysis, Proc. instr. Conf. Durham/England 1979, 3–36, 1980. Google Scholar
  4. [4]
    C.A. Berenstein and R. Gay: Complex Analysis and Special Topics in Harmonic Analysis, Springer-Verlag, New York, Berlin, Heidelberg, 1995.CrossRefzbMATHGoogle Scholar
  5. [5]
    S. Bernstein: Integralgleichungen und Funktionenräume für Randwerte monogener Funktionen, Habilitationsschrift, Fakultät für Mathematik und Informatik, TU Bergakademie Freiberg, 2001.Google Scholar
  6. [6]
    S. Bernstein: The space of monogenic BMO-functions and a John-Nirenberg inequality,3r d international ISAAC congress, Berlin, 2001, to appear.Google Scholar
  7. [7]
    P.L. Duren: Theory of HP spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, 1970.Google Scholar
  8. [8]
    A. Erdélyi, W. Magnus, F. Oberhettinger and F. Tricomi: Higher Transcendental Functions,Mc Graw-Hill, New York, 1953.Google Scholar
  9. [9]
    P. Cerejeiras: Reproducing Properties of Hyperbolically-Harmonic and Monogenic Functions, Adv. in Appl. Clifford Algebras 11(S2), (2001), 61–66.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    J. Cnops, R. Delanghe: Möbius invariant spaces in the unit ball, Appl. Anal. 73, No. 1–2, (1999), 45–64.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    R. Delanghe, F. Sommen and V. Souček: Clifford Algebra and Spinor-Valued Functions, A Function Theory for the Dirac Operator, Kluwer Academic Publishers, Dordrecht, Boston, London, 1992. CrossRefGoogle Scholar
  12. [12]
    C. Fefferman, E. M. Stein: HP spaces of several variables, Acta Math. 129 (1972), 137–193.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    J. E. Gilbert, M. A. M. Murray: Clifford algebras and Dirac operators in harmonic analysis, (Cambridge studies in advances mathematics 26), Cambridge University Press 1991.CrossRefGoogle Scholar
  14. [14]
    K. Gürlebeck, U. Kähler, M.V. Shapiro and L.M. Tovar: On Q P -Spaces of Quaternion- Valued Functions, Complex Variables 39 (1999), 115–135.CrossRefzbMATHGoogle Scholar
  15. [15]
    H. Hochstadt: The Functions of Mathematical Physics, Wiley, New York, 1971.zbMATHGoogle Scholar
  16. [16]
    K. Hoffman: Banach Spaces of Analytic Functions, Dover Publications, Inc., 1988, (reprint of the work first published by Prentice-Hall, Inc., Englewood Cliffs, N.J., in 1962).Google Scholar
  17. [17]
    F. John and L. Nirenberg: On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14, (1960), 415–426. MathSciNetCrossRefGoogle Scholar
  18. [18]
    H. Leutwiler: Lectures on BMO, Universität Erlangen-Nürnberg, Mathematisches Institut, 1988. Google Scholar
  19. [19]
    H. Leutwiler: Harmonic functions of bounded mean oscillation, Mathematische Annalen 244, (1979), 167–183.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    A. McIntosh: Clifford algebras, Fourier theory, singular integrals, and harmonic functions on Lipschitz domains. in: Ryan, John (ed.), Clifford algebras in analysis and related topics. Based on a conference, Fayetteville, AR, USA, April 8–10, 1993. Boca Raton, FL: CRC Press. Studies in Advanced Mathematics, 33–87, (1996).Google Scholar
  21. [21]
    M. Mitrea: Clifford Waveletts, Singular Integrals and Hardy Spaces, Lecture Notes in Mathematics, vol. 1575, Springer-Verlag, New York, Berlin, Heidelberg, 1994.Google Scholar
  22. [22]
    G.C. Moisil, N. Teodorescu, Fonctions holomorphes dans l’espace, Mathematicae Cluj 5, (1931), 142–150.zbMATHGoogle Scholar
  23. [23]
    W. Rudin: Function theory in the Unit Ball of Cn, Springer-Verlag, New York, Heidelberg, Berlin, 1980.CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2004

Authors and Affiliations

  • Swanhild Bernstein
    • 1
  1. 1.Bauhaus-Universität WeimarMathematische OptimierungWeimarGermany

Personalised recommendations