Skip to main content

Spin Geometry, Clifford Analysis, and Joint Seminormality

  • Chapter
Advances in Analysis and Geometry

Part of the book series: Trends in Mathematics ((TM))

Abstract

The first part of this article studies the integral and maximal operators associated with fundamental solutions of Dirac operators on Clifford bundles. The main goal is to obtain explicit estimates for integral transforms of this kind in terms of the corresponding maximal functions. As direct cones-quences of such estimates one derives several quantitative Hartogs-Rosenthal type theorems concerning monogenic approximation on compact sets.

The second part illustrates a Clifford analysis approach to the theory of seminormal systems of Hilbert space operators. The four existing concepts of joint seminormality are reevaluated by assuming that the remainders in some Bochner-Kodaira identities are semidefinite, and a new concept is introduced based on a Bochner-Weitzenböck identity. A rather general singular integral model of jointly seminormal pairs of systems of self-adjoint operators that involves Riesz transforms is presented, and a Putnam type commutator inequality for that model is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlfors, L. and Beurling, A., Conformal invariants and function theoretic null sets, Acta Math 83 (1950), 101–129.

    MathSciNet  MATH  Google Scholar 

  2. Alexander, H., Projections of polynomial hulls, J. Funct. Anal. 13 (1973), 13–19.

    Article  MATH  Google Scholar 

  3. Alexander, H., On the area of the spectrum of an element of a uniform algebra. In Complex Approximation Proceedings, Quebec, July 3–8, 1978, Birkhäuser, 1980, 3–12.

    Google Scholar 

  4. Aronszajn, N., A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, J. Math. Pures Appl. 36 (1957), 235–249.

    MathSciNet  MATH  Google Scholar 

  5. Athavale, A., On joint hyponormal operators, Proc. Amer. Math. Soc. 103 (1988), 417–423.

    Article  MathSciNet  MATH  Google Scholar 

  6. Axler, S. and Shapiro, J. H., Putnam’s theorem, Alexander’s spectral area estimate, and VMO, Math. Ann. 271 (1985), 161–183.

    Article  MathSciNet  MATH  Google Scholar 

  7. Berline, H., Getzler, E., and Vergne, M., Heat Kernels and Dirac Operators, Grundlehren der Mathematischen Wissenschaften, 298, Springer Verlag, New York, 1992.

    Google Scholar 

  8. Bochner, S., Curvature and Betti numbers. I; II, Ann. of Math. 49 (1948), 379–390; 50 (1949), 79–93.

    Google Scholar 

  9. Bochner, S. and Yano, K. Curvature and Betti Numbers, Ann. of Math. Studies 32, Princeton University Press, Princeton, 1953.

    Google Scholar 

  10. Brackx, F., Delanghe, R., and Sommen, F., Clifford Analysis, Pitman Research Notes in Mathematics Series 76, 1982.

    MATH  Google Scholar 

  11. Calderbank, D. M. J., Dirac operators and Clifford analysis on manifolds with boundary, Odense Universitet, Preprint 53, 1997.

    Google Scholar 

  12. Clancey, K. F., Seminormal Operators, Lecture Notes in Math. 742, Springer Verlag, 1979.

    MATH  Google Scholar 

  13. Cho, M., Curto, R. E., Huruya, T., and Zelazko, W., Cartesian form of Put­nam’s inequality for doubly commuting n-tuples, Indiana Univ. Math. J. 49 (2000),1437–1448.

    MathSciNet  MATH  Google Scholar 

  14. Cnops, J., An Introduction to Dirac Operators on Manifolds, Progress in Mathematical Physiscs, Birkhäuser, Basel, 2002.

    Book  Google Scholar 

  15. Conway, J. B., The Theory of Subnormal Operators, Mathematical Surveys and Monographs, 36, American Mathematical SocietyProvidence, RI, 1991.

    Google Scholar 

  16. Curto, R. E. Joint hyponormality: a bridge between hyponormality and subnor-mality, in Operator Theory, Operator Algebras and Applications, W. B. Arveson and R. G. Douglas (eds.); Part 2, Proc. Sympos. Pure Math. 51 (1990), 69–91.

    Google Scholar 

  17. Curto, R. E. and Jian, R. A matricial identity involving the self-commutator of a commuting n-tuple, Proc. Amer. Math. Soc. 121 (1994), 461–464.

    MathSciNet  MATH  Google Scholar 

  18. Curto, R. E., Muhly, P. A., and Xia, J., Hyponormal pairs of commuting oper­ators, in Operator Theory: Advances and Applications 35, Springer Basel AG, 1988, 1–22.

    Google Scholar 

  19. Delanghe, R., Sommen, F., and Soucek, V., Clifford Algebra and Spinor-Valued Functions, Kluwer Academic Publishers, 1992.

    Book  MATH  Google Scholar 

  20. Douglas, R. G., Paulsen, V., and Yan, K., Operator theory and algebraic geometry, Bull. Amer. Math. Soc. 20 (1988), 67–71.

    Article  MathSciNet  Google Scholar 

  21. Friedrich, T., Dirac Operators in Riemannian Geometry, Graduate Studies in Mathematics 25, Amer. Math. Soc., Providence, RI, 2000.

    Google Scholar 

  22. Gilbert, J. E. and Murray, M. A. M., Clifford Algebras and Dirac Operators in Harmonic Analysis, Cambridge Studies in Advanced Mathematics 26, Cam­bridge University Press, 1991.

    Book  Google Scholar 

  23. Gilkey, P. B., The spectral geometry of a Riemann manifold, J. Diff. Geom. 10 (1975), 601–608.

    MathSciNet  MATH  Google Scholar 

  24. Gilkey, P. B., Leahy, J. V., and Park, JH., Spectral Geometry, Riemannian Submersions, and the Gromov-Lawson Conjecture, CRC Press, Boca Raton, FL, 1999.

    MATH  Google Scholar 

  25. Goldberg, R., Curvature and Homology, Academic Press, New York, London, 1962.

    MATH  Google Scholar 

  26. Gürlebeck, K. and Sprössig, W., Quaternionic Analysis and Elliptic Boundary Value Problems, Birkhäuser, Basel, 1990.

    Book  MATH  Google Scholar 

  27. Gürlebeck, K. and Sprössig, W.Quaternionic and Clifford Calculus for Physicists cists and Engineers, John Wiley & Sons, New York, 1997.

    MATH  Google Scholar 

  28. Hedberg, L., On certain convolution inequalities, Proc. Amer. Math. Soc. 36 (1972), 505–510.

    Article  MathSciNet  Google Scholar 

  29. Kato, T., Smooth operators and commutators, Studia Math. 31 (1968), 531–546.

    MathSciNet  Google Scholar 

  30. Lawson, H. B. and Michelson, M.-L., Spin Geometry, Princeton Mathematical Series, 38, Princeton University Press, Princeton, 1989.

    Google Scholar 

  31. Lieb, E. H., Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Annals of Math. 118 (1983) 349–379.

    Article  MathSciNet  MATH  Google Scholar 

  32. Martin, M., Joint seminormality and Dirac operators, Integral Equations Operator Theory 30 (1998), 101–121.

    Article  MathSciNet  MATH  Google Scholar 

  33. Martin, M., Higher-dimensional Ahlfors-Beurling inequalities in Clifford anal­ysis, Proc. Amer. Math. Soc. 126 (1998), 2863–2871.

    Article  MathSciNet  MATH  Google Scholar 

  34. Martin, M., Convolution and maximal operator inequalities in Clifford analysis, in Clifford Algebras and Their Applications in Mathematical Physics, Vol. 2: Clifford Analysis, Progress in Physics 9, Springer Basel AG, Basel, 2000, 95–113.

    Google Scholar 

  35. Martin, M., Self-commutator inequalities in higher dimension, Proc. Amer. Math. Soc. 130 (2002), 2971–2983.

    Article  MathSciNet  MATH  Google Scholar 

  36. Martin, M., Uniform approximation by closed forms in several complex vari­ables, preprint, 2002.

    Google Scholar 

  37. Martin M. and Putinar, M., Lectures on Hyponormal Operators, Operator Theory: Advances and Applications 39, Springer Basel AG, Basel, 1989.

    Google Scholar 

  38. Martin, M. and Salinas, N., Weitzenböck type formulas and joint seminormality, Contemporary Math., Amer. Math. Soc. 212 (1998), 157–167.

    MathSciNet  Google Scholar 

  39. Martin, M. and Szeptycki, P., Sharp inequalities for convolution operators with homogeneous kernels and applications, Indiana Univ. Math. J. 46 (1997), 975–988.

    Article  MathSciNet  MATH  Google Scholar 

  40. McCullough, S. and Paulsen, V., A note on joint hyponormality, Proc. Amer. Math. Soc. 107 (1989), 187–195.

    Article  MathSciNet  MATH  Google Scholar 

  41. McIntosh, A., Operators which have a H functional calculus, in Miniconference on Operator Theory and Partial Differential Equations, 1986, Proceedings of the Centre for Mathematical Analysis, ANU, Canberra 14 (1986), 210–23

    MathSciNet  Google Scholar 

  42. McIntosh, A., Clifford algebras, Fourier theory, singular integrals, and harmonic functions on Lipschitz domains, in Clifford Algebras in Analysis and Related Topics, J. Ryan (Ed.), CRC Press, Boca Raton, FL, 1995.

    Google Scholar 

  43. McIntosh, A. and Pryde, A., A functional calculus for several commuting operators, Indiana Univ. Math. J. 36 (1987), 421–439.

    Article  MathSciNet  MATH  Google Scholar 

  44. McIntosh, A., Pryde, A., and Ricker, W., Comparison of joint spectra for certain classes of commuting operators, Studia Math. 88 (1988), 23–36.

    MathSciNet  MATH  Google Scholar 

  45. Mitrea, M., Singular Integrals, Hardy Spaces, and Clifford Wavelets,Lecture Notes in Mathematics, 1575, Springer-Verlag, Heidelberg, 1994.

    Google Scholar 

  46. Muhly, P. S., A note on commutators and singular integrals, Proc. Amer. Math. Soc. 54 (1976), 117–121.

    Article  MathSciNet  MATH  Google Scholar 

  47. Pincus, J. D., Commutators and systems of singular integral equations, Acta Math. 121 (1968), 219–249.

    Article  MathSciNet  MATH  Google Scholar 

  48. Pincus, J. D. and Xia, D., The analytic model of a hyponormal operator with rank one self-commutator, Integral Equations Operator Theory 4 (1981), 134–150.

    Article  MathSciNet  MATH  Google Scholar 

  49. Pincus, J. D., Xia, D., and Xia, J., The analytic model of a hyponormal operator with rank one self-commutator, Integral Equations Operator Theory 7 (1984), 516–535.

    Article  MathSciNet  MATH  Google Scholar 

  50. Putinar, M., Extreme hyponormal operators, Operator Theory: Advances and Applications 28 (1988), 249–265.

    MathSciNet  Google Scholar 

  51. Putnam, C. R., Commutation Properties of Hilbert Space Operators and Related Topics, Springer-Verlag, Berlin, Heidelberg, New York, 1967.

    Book  Google Scholar 

  52. Putnam, C. R., An inequality for the area of hyponormal spectra, Math. Z. 116 (1970), 323–330.

    Article  MathSciNet  MATH  Google Scholar 

  53. Roe, J., Elliptic Operators, Topology, and Asymptotic Methods, 2nd ed., Pitman Research Notes, 395, Longman, 1998.

    Google Scholar 

  54. Ryan, J. (Ed.), Clifford Algebras in Analysis and Related Topics, CRC Press, Boca Raton, FL, 1995.

    Google Scholar 

  55. Ryan, J., Dirac operators, conformal transformations and aspects of classical harmonic analysis, Journal of Lie Theory 8 (1998), 67–82.

    MathSciNet  MATH  Google Scholar 

  56. Ryan, J. and Sprößig, W. (Eds.), Clifford Algebras and Their Applications in Mathematical Physics, Volume 2: Clifford Analysis, Progress in Physics 19, Birkhäuser, Basel, 2000.

    Google Scholar 

  57. Stein, E. M., Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, NJ„ 1970.

    MATH  Google Scholar 

  58. Stein, E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, NJ, 1993.

    Google Scholar 

  59. Tarkhanov, N. N., The Cauchy Problem for Solutions of Elliptic Equations, Akademie Verlag, Berlin, 1995.

    MATH  Google Scholar 

  60. D. Xia, On non-normal operators. I, Chinese J. Math. 3(1963), 232–246; II, Acta Math. Sinica 21 (1987), 103–108.

    Google Scholar 

  61. D. Xia, Spectral Theory of Hyponormal Operators, Springer Basel AG, Basel Boston-Stuttgart, 1983.

    MATH  Google Scholar 

  62. D. Xia, On some classes of hyponormal tuples of commuting operators, in Operator Theory: Advances and Applications 48, Springer Basel AG, 1990, 423–448.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this chapter

Cite this chapter

Martin, M. (2004). Spin Geometry, Clifford Analysis, and Joint Seminormality. In: Qian, T., Hempfling, T., McIntosh, A., Sommen, F. (eds) Advances in Analysis and Geometry. Trends in Mathematics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7838-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7838-8_12

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9589-7

  • Online ISBN: 978-3-0348-7838-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics