Skip to main content

Part of the book series: Progress in Inflammation Research ((PIR))

  • 96 Accesses

Abstract

Angiogenesis is defined as the production of new blood vessels from pre-existing blood vessels. It is a carefully controlled process that occurs in a healthy individual only under specific conditions at specific times, such as during embryogenesis, wound healing, ovulation and menses. At other times, the vasculature is extremely stable, with very low rates of endothelial cell turnover and little production of new vessels [1]. However, there are pathological conditions in which angiogenesis occurs, examples being cancer, arthritis, ocular diseases, psoriasis [2–4]. In fact, the hypothesis has been proposed that many of these diseases depend on the new vasculature to provide a basis for their proliferation [5–7]. Thus, inhibition of angiogenesis is proposed to be a potential therapeutic approach to chronic proliferative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fan TP, Jaggar R, Bicknell R (1995) Controlling the vasculature: angiogenesis, anti-

    Google Scholar 

  2. angiogenesis and vascular targeting of gene therapy. Trends Pharmacol Sci 16: 57–66

    Google Scholar 

  3. Polverini PJ (1995) The pathophysiology of angiogenesis. Crit Rev Oral Biol Med 6: 230–247

    Article  PubMed  CAS  Google Scholar 

  4. Chung SK, Ng A, Min HY, Strattonthomas J, Rosenberg S, Shuman M, Hwang DG (1995) Inhibition of basic fibroblast growth factor-induced corneal angiogenesis by a urokinase plasminogen-activator receptor antagonist. Invest Ophthal Visual Sci 36: S30

    Google Scholar 

  5. Folkman J, Brem H (1992) Angiogenesis and inflammation. In: JI Gallin, IM Goldstein, R Snyderman (eds): Inflammation: Basic principles and clinical correlates, Second edition. Raven Press Ltd, New York, 821–839

    Google Scholar 

  6. Folkman J (1972) Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg 175: 409–416

    Article  PubMed  CAS  Google Scholar 

  7. Folkman J, Shing Y (1992) Angiogenesis. J Biol Chem 267 (16): 10931–10934

    PubMed  CAS  Google Scholar 

  8. Folkman J (1992) The role of angiogenesis in tumor growth. Semin Cancer Biol 3 (2): 65–71

    PubMed  CAS  Google Scholar 

  9. Jackson JR, Seed MP, Kircher CH, Willoughby DA, Winkler JD (1997) The co-dependence of angiogenesis and chronic inflammation. FASEB J 11: 457–465

    PubMed  CAS  Google Scholar 

  10. Polverini PJ (1997) Role of the macrophage in angiogenesis-dependent diseases. EXS 79: 11–28

    PubMed  CAS  Google Scholar 

  11. Auerbach W, Auerbach R (1994) Angiogenesis inhibition: A review. Pharmacol Ther 63: 265–311

    Article  PubMed  CAS  Google Scholar 

  12. Okamura K, Morimoto A, Hamanaka R, Ono M, Kohno K, Uchida Y, Kuwano M (1992) A model system for tumor angiogenesis: involvement of transforming growth factor-alpha in tube formation of human microvascular endothelial cells induced by esophageal cancer cells. Biochem Biophys Res Comm 186: 1471–1479

    Article  PubMed  CAS  Google Scholar 

  13. Colville Nash PR, Willoughby DA (1997) Growth factors in angiogenesis: current interest and therapeutic potential. Mol Med Today 3: 14–23

    Article  PubMed  CAS  Google Scholar 

  14. Folkman J (1997) Angiogenesis and angiogenesis inhibition: an overview. EXS 79: 1–8

    PubMed  CAS  Google Scholar 

  15. Iruela-Arispe ML, Dvorak HF (1997) Angiogenesis: a dynamic balance of stimulators and inhibitors. Thromb Haemost 78: 672–677

    PubMed  CAS  Google Scholar 

  16. Villaschi S, Nicosia RF (1993) Angiogenic role of endogenous basic fibroblast growth factor released by rat aorta after injury. Am J Pathol 143: 181–190

    PubMed  CAS  Google Scholar 

  17. Nicosia RF, Villaschi S (1995) Rat aortic smooth-muscle cells become pericyte-like cells during angiogenesis in vitro. Faseb J 9: A 587

    Google Scholar 

  18. Cockerill GW, Gamble JR, Vadas MA (1995) Angiogenesis: Models and modulators. Int Rev Cytology 159: 113–160

    Article  CAS  Google Scholar 

  19. Colville-Nash PR, Seed MP (1993) The current state of angiostatic therapy, with special reference to rheumatoid arthritis. Curr Opin Invest Drugs 2: 763–813

    Google Scholar 

  20. Auerbach R, Auerbach W, Polakowski I (1991) Assays for angiogenesis: a review. Pharmacol Ther 51: 1–11

    Article  PubMed  Google Scholar 

  21. Folkman J (1974) Proceedings: Tumor angiogenesis factor. Cancer Res 34: 2109–2113

    PubMed  CAS  Google Scholar 

  22. Nguyen M, Shing Y, Folkman J (1994) Quantitation of angiogenesis and antiangiogenesis in the chick embryo chorioallantoic membrane. Microvasc Res 47: 31–40

    Article  PubMed  CAS  Google Scholar 

  23. Wilting J, Christ B, Bokeloh M (1991) A modified chorioallantoic membrane (CAM) assay for qualitative and quantitative study of growth factors. Studies on the effects of carriers, PBS, angiogenin, and bFGF. Anat Embryol Berl 183: 259–271

    Article  PubMed  CAS  Google Scholar 

  24. Maragoudakis ME, Haralabopoulos GC, Tsopanoglou NE, Pipili Synetos E (1995) Validation of collagenous protein synthesis as an index for angiogenesis with the use of morphological methods. Microvasc Res 50: 215–222

    Article  PubMed  CAS  Google Scholar 

  25. Oh SJ, Jeltsch MM, Birkenhager R, McCarthy JE, Weich HA, Christ B, Alitalo K, Wilting J (1997) VEGF and VEGF-C: specific induction of angiogenesis and lymphangiogenesis in the differentiated avian chorioallantoic membrane. Dev Biol 188: 96–109

    Article  PubMed  CAS  Google Scholar 

  26. Tsopanoglou NE, Pipili Synetos E, Maragoudakis ME (1993) Thrombin promotes angiogenesis by a mechanism independent of fibrin formation. Am J Physiol 264: C1302 — C1307

    PubMed  CAS  Google Scholar 

  27. Anand Apte B, Pepper MS, Voest E, Montesano R, Olsen B, Murphy G, Apte SS, Zetter B (1997) Inhibition of angiogenesis by tissue inhibitor of metalloproteinase-3. Invest Ophthalmol Vis Sci 38: 817–823

    PubMed  CAS  Google Scholar 

  28. Brooks PC, Montgomery AMP, Rosenfeld M, Reisfeld RA, Hu T, Klier G, Cheresh DA (1994) Integrin avb3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79: 1157–1164

    Article  PubMed  CAS  Google Scholar 

  29. Kusaka M, Sudo K, Fujita T, Marui S, Itoh F, Ingber D, Folkman J (1991) Potent antiJames D. Winkler et al. angiogenic action of AGM-1470: comparison to the fumagilliam parent. Biochem Biophys Res Commun 174: 1070–1076

    Article  PubMed  CAS  Google Scholar 

  30. Tsopanoglou NE, Haralabopoulos GC, Maragoudakis ME (1994) Opposing effects on modulation of angiogenesis by protein kinase C and cAMP-mediated pathways. J Vasc Res 31: 195–204

    Article  PubMed  CAS  Google Scholar 

  31. Passaniti A, Taylor RM, Pili R, Guo Y, Long PV, Haney JA, Pauly RR, Grant DS, Martin GR (1992) A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab Invest 67: 519–528

    PubMed  CAS  Google Scholar 

  32. Haralabopoulos GC, Grant DS, Kleinman HK, Maragoudakis ME (1997) Thrombin promotes endothelial cell alignment in Matrigel in vitro and angiogenesis in vivo. Am J Physiol 273: C239 — C245

    CAS  Google Scholar 

  33. Angiolillo AL, Kanegane H, Sgadari C, Reaman GH, Tosato G (1997) Interleukin-15 promotes angiogenesis in vivo. Biochem Biophys Res Commun 233: 231–237

    Article  CAS  Google Scholar 

  34. Montrucchio G, Lupia E, De Martino A, Battaglia E, Arese M, Tizzani A, Bussolino F, Camussi G (1997) Nitric oxide mediates angiogenesis induced in vivo by platelet-activating factor and tumor necrosis factor-alpha. Am J Pathol 151: 557–563

    PubMed  CAS  Google Scholar 

  35. Joseph IB, Vukanovic J, Isaacs JT (1996) Antiangiogenic treatment with linomide as chemoprevention for prostate, seminal vesicle, and breast carcinogenesis in rodents. Cancer Res 56: 3404–3408

    PubMed  CAS  Google Scholar 

  36. Lupia E, Montrucchio G, Battaglia E, Modena V, Camussi G (1996) Role of tumor necrosis factor-alpha and platelet-activating factor in neoangiogenesis induced by synovial fluids of patients with rheumatoid arthritis. Eur J Immunol 26: 1690–1694

    Article  PubMed  CAS  Google Scholar 

  37. Ito Y, Iwamoto Y, Tanaka K, Okuyama K, Sugioka Y (1996) A quantitative assay using basement membrane extracts to study tumor angiogenesis in vivo. Int J Cancer 67: 148–152

    Article  CAS  Google Scholar 

  38. Plunkett ML, Hailey JA (1990) An in vivo quantitative angiogenesis model using tumor cells entrapped in alginate. Lab Invest 62: 510–517

    PubMed  CAS  Google Scholar 

  39. Hoffmann J, Schirner M, Menrad A, Schneider MR (1997) A highly sensitive model for quantification of in vivo tumor angiogenesis induced by alginate-encapsulated tumor cells. Cancer Res 57: 3847–3851

    PubMed  CAS  Google Scholar 

  40. Kimura M, Amemiya K, Yamada T, Suzuki J (1986) Quantitative method for measuring adjuvant-induced granuloma angiogenesis in insulin-treated diabetic mice. J Pharmacobio-Dyn 9: 442–446

    Article  PubMed  CAS  Google Scholar 

  41. Colville-Nash PR, Alam CAS, Appleton I, Browne JR, Seed MP, Willoughby DA (1995) The pharmacological modulation of angiogenesis in chronic granulomatous inflammation. J Pharmacol Exp Ther 274: 1463–1472

    PubMed  CAS  Google Scholar 

  42. Andrade SP, Fan TP, Lewis GP (1987) Quantitative in vivo studies on angiogenesis in a rat sponge model. Br J Exp Pathol 68: 755–766

    PubMed  CAS  Google Scholar 

  43. Hu DE, Hiley CR, Smither RL, Gresham GA, Fan TP (1995) Correlation of 133Xe clearance, blood flow and histology in the rat sponge model for angiogenesis. Further studies with angiogenic modifiers. Lab Invest 72: 601–610

    PubMed  CAS  Google Scholar 

  44. Colville-Nash PR, El-Ghazaly M, Willoughby DA (1993) The use of angiostatic steroids to inhibit cartilidge destruction in an in vivo model of granuloma mediated cartilidge destruction. Agents and Actions 38: 126–134

    Article  PubMed  CAS  Google Scholar 

  45. Hori Y, Hu DE, Yasui K, Smither RL, Gresham GA, Fan TP (1996) Differential effects of angiostatic steroids and dexamethasone on angiogenesis and cytokine levels in rat sponge implants. Br J Pharmacol 118: 1584–1591

    Article  PubMed  CAS  Google Scholar 

  46. Jackson JR, Bolognese B, Hillegass L, Kassis S, Adams J, Griswold DE, Winkler JD (1998) Pharmacological effects of SB 220025, a selective inhibitor of p38 mitogen-activated protein kinase, in angiogenesis and chronic inflammatory disease models. J Pharmacol Exp Ther 284: 687–692

    PubMed  CAS  Google Scholar 

  47. Jackson JR, Bolognese B, Hubbard WC, Marshall LA, Winkler JD (1998) Platelet-activating factor derived from 14 kDa phospholipase A2 contributes to inflammatory angiogenesis. Biochem Biophys Acta 1392: 145–152

    Article  PubMed  CAS  Google Scholar 

  48. Appleton I, Tomlinson A, Colville-Nash PR, Willoughby DA (1993) Temporal and spatial immunolocalization of cytokines in murine chronic granulomatous tissue. Lab Invest 69: 405–414

    PubMed  CAS  Google Scholar 

  49. Kimura M, Suzuki J, Amemiya K (1985) Mouse granuloma pouch induced by Freund’s complete adjuvant with croton oil. J Pharmacobio-Dyn 8: 393–400

    Article  PubMed  CAS  Google Scholar 

  50. Gimbrone MA,Jr., Cotran RS, Leapman SB, Folkman J (1974) Tumor growth and neovascularization: an experimental model using the rabbit cornea. J Natl Cancer Inst 52: 413–427

    Google Scholar 

  51. Fournier GA, Lutty GA, Watt S, Fenselau A, Patz A (1981) A corneal micropocket assay for angiogenesis in the rat eye. Invest Ophthalmol Vis Sci 21: 351–354

    PubMed  CAS  Google Scholar 

  52. Muthukkaruppan V, Auerbach R (1979) Angiogenesis in the mouse cornea. Science 205: 1416–1418

    Article  PubMed  CAS  Google Scholar 

  53. Galardy RE, Grobelny D, Foellmer HG, Fernandez LA (1994) Inhibition of angiogenesis by the matrix metalloprotease inhibitor N42R-2-(hydroxamidocarbonymethyl)-4methylpentanoyl)]-L-trypto phan methylamide. Cancer Res 54: 4715–4718

    PubMed  CAS  Google Scholar 

  54. BenEzra D, Griffin BW, Maftzir G, Aharonov 0 (1993) Thrombospondin and in vivo angiogenesis induced by basic fibroblast growth factor or lipopolysaccharide. Invest Ophthalmol Vis Sci 34: 3601–3608

    PubMed  CAS  Google Scholar 

  55. Kenyon BM, Voest EE, Chen CC, Flynn E, Folkman J, D’Amato RJ (1996) A model of angiogenesis in the mouse cornea. Invest Ophthalmol Vis Sci 37: 1625–1632

    PubMed  CAS  Google Scholar 

  56. BenEzra D, Maftzir G (1996) Antibodies to IL-1 and TNF-alpha but not to bFGF or VEGF inhibit angiogenesis. Invest Ophthalmol Vis Sci 37: 4664

    Google Scholar 

  57. Friedlander M, Brooks PC, Shaffer RW, Kincaid CM, Varner JA, Cheresh DA (1995) Definition of 2 angiogenic pathways by distinct alpha(v) integrins. Science 270: 1500–1502

    Article  PubMed  CAS  Google Scholar 

  58. Pettet G, Chaplain MA, McElwain DL, Byrne HM (1996) On the role of angiogenesis in wound healing. Proc R Soc Lond B Biol Sci 263: 1487–1493

    Article  CAS  Google Scholar 

  59. Sephel GC, Kennedy R, Kudravi S (1996) Expression of capillary basement membrane components during sequential phases of wound angiogenesis. Matrix Biol 15: 263–279

    Article  PubMed  CAS  Google Scholar 

  60. Takenaka H, Kishimoto S, Tooyama I, Kimura H, Yasuno H (1997) Protein expression of fibroblast growth factor receptor-1 in keratinocytes during wound healing in rat skin. J Invest Dermatol 109: 108–112

    Article  PubMed  CAS  Google Scholar 

  61. Arnold F, West DC (1991) Angiogenesis in wound healing. Pharmacol Ther 52 (3): 407–422

    Article  PubMed  CAS  Google Scholar 

  62. Lees VC, Fan TP (1994) A freeze-injured skin graft model for the quantitative study of basic fibroblast growth factor and other promoters of angiogenesis in wound healing. Br J Plast Surg 47: 349–359

    Article  PubMed  CAS  Google Scholar 

  63. Wong AL, Haroon ZA, Werner S, Dewhirst MW, Greenberg CS, Peters KG (1997) Tie2 expression and phosphorylation in angiogenic and quiescent adult tissues. Circ Res 81: 567–574

    Article  PubMed  CAS  Google Scholar 

  64. Okumura M, Okuda T, Okamoto T, Nakamura T, Yajima M (1996) Enhanced angiogenesis and granulation tissue formation by basic fibroblast growth factor in healing-impaired animals. Arzneimittelforschung 46: 1021–1026

    PubMed  CAS  Google Scholar 

  65. Christofidou-Solomidou M, Bridges M, Murphy GF, Albelda SM, DeLisser HM (1997) Expression and function of endothelial cell alpha IT integrin receptors in wound-induced human angiogenesis in human skin/SCID mice chimeras. Am J Pathol 151: 975–983

    PubMed  CAS  Google Scholar 

  66. Dellian M, Witwer BP, Salehi HA, Yuan F, Jain RK (1996) Quantitation and physiological characterization of angiogenic vessels in mice: effect of basic fibroblast growth factor, vascular endothelial growth factor/vascular permeability factor, and host microenvironment. Am J Pathol 149: 59–71

    PubMed  CAS  Google Scholar 

  67. Torres Filho IP, Hartley Asp B, Borgstrom P (1995) Quantitative angiogenesis in a syngeneic tumor spheroid model. Microvasc Res 49: 212–226

    Article  PubMed  CAS  Google Scholar 

  68. Lin P, Polverini P, Dewhirst M, Shan S, Rao PS, Peters K (1997) Inhibition of tumor angiogenesis using a soluble receptor established a role for Tie2 in pathologic vascular growth. J Clin Invest 100: 2072–2078

    Article  PubMed  CAS  Google Scholar 

  69. Norrby K (1992) On the quantitative rat mesenteric-window angiogenesis assay. EXS 61: 282–286

    PubMed  CAS  Google Scholar 

  70. Norrby K (1996) Vascular endothelial growth factor and de novo mammalian angiogenesis. Microvasc Res 51: 153–163

    Article  PubMed  CAS  Google Scholar 

  71. Norrby K (1996) Interleukin-8 and de novo mammalian angiogenesis. Cell Prolif 29: 315–323

    Article  PubMed  CAS  Google Scholar 

  72. Norrby K (1997) Interleukin-1-alpha and de novo mammalian angiogenesis. Microvasc Res 54: 58–64

    Article  PubMed  CAS  Google Scholar 

  73. Inoue K, Ozeki Y, Suganuma T, Sugiura Y, Tanaka S (1997) Vascular endothelial growth factor expression in primary esophageal squamous cell carcinoma. Association with angiogenesis and tumor progression. Cancer 79: 206–213

    Article  PubMed  CAS  Google Scholar 

  74. Seed MP, Brown JR, Freemantle CN, Papworth JL, Colville Nash PR, Willis D, Somerville KW, Asculai S, Willoughby DA (1997) The inhibition of colon-26 adenocarcinoma development and angiogenesis by topical diclofenac in 2.5% hyaluronan. Cancer Res 57: 1625–1629

    PubMed  CAS  Google Scholar 

  75. Ingber D, Fujita T, Kishimoto S, Sudo K, Kanamaru T, Brem H, Folkman J (1990) Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumour growth. Nature 348: 555–557

    Article  PubMed  CAS  Google Scholar 

  76. O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88: 277–285

    Article  PubMed  Google Scholar 

  77. Borgstrom P, Torres Filho IP, Hartley Asp B (1995) Inhibition of angiogenesis and metastases of the Lewis-lung cell carcinoma by the quinoline-3-carboxamide, Linomide. Anticancer Res 15: 719–728

    PubMed  CAS  Google Scholar 

  78. O’Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J (1994) Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79: 315–328

    Article  PubMed  Google Scholar 

  79. Taraboletti G, Garofalo A, Belotti D, Drudis T, Borsotti P, Scanziani E, Brown PD, Giavazzi R (1995) Inhibition of angiogenesis and murine hemangioma growth by Batimastat, a synthetic inhibitor of matric metalloproteinases. J Nall Cancer Inst 87: 293–298

    Article  CAS  Google Scholar 

  80. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N (1993) Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362: 841–844

    Article  CAS  Google Scholar 

  81. Boehm T, Folkman J, Browder T, O’Reilly MS (1997) Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390: 404–407

    Article  PubMed  CAS  Google Scholar 

  82. Neeman M, Abramovitch R, Schiffenbauer YS, Tempel C (1997) Regulation of angiogenesis by hypoxic stress: from solid tumours to the ovarian follicle. Int J Exp Pathol 78: 57–70

    Article  PubMed  CAS  Google Scholar 

  83. Magovern CJ, Mack CA, Zhang J, Rosengart TK, Isom OW, Crystal RG (1997) Regional angiogenesis induced in nonischemic tissue by an adenoviral vector expressing vascular endothelial growth factor. Hum Gene Ther 8: 215–227

    Article  PubMed  CAS  Google Scholar 

  84. Bauters C, Asahara T, Zheng LP, Takeshita S, Bunting S, Ferrara N, Symes JF, Isner JM (1995) Site-specific therapeutic angiogenesis after systemic administration of vascular endothelial growth factor. J Vasc Surg 21: 314–325

    Article  PubMed  CAS  Google Scholar 

  85. Oliver SJ, Banquerigo ML, Brahn E (1994) Suppression of collagen-induced arthritis using an angiogenesis inhibitor, AGM- 1470, and a microtubule stabilizer, taxol. Cell Immunol 157: 291–299

    Article  PubMed  CAS  Google Scholar 

  86. Peacock DJ, Banquerigo ML, Brahn E (1995) A novel angiogenesis inhibitor suppresses rat adjuvant arthritis. Cell Immunol 160: 178–184

    Article  PubMed  CAS  Google Scholar 

  87. Griffith EC, Su Z, Turk BE, Chen S, Chang YH, Wu Z, Biemann K, Liu JO (1997) Methionine aminopeptidase (type 2) is the common target for angiogenesis inhibitors AGM-1470 and ovalicin. Chem Biol 4: 461–471

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this chapter

Cite this chapter

Winkler, J.D., Jackson, J.R., Fan, TP., Seed, M.P. (1999). Angiogenesis. In: Morgan, D.W., Marshall, L.A. (eds) In Vivo Models of Inflammation. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7775-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7775-6_4

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-7777-0

  • Online ISBN: 978-3-0348-7775-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics