Skip to main content

Part of the book series: Progress in Inflammation Research ((PIR))

  • 96 Accesses

Abstract

With the explosion of genetic information becoming available in large part due to the Human Genome Project, there is a need to determine the function and role of previously unknown genes. Much can be learned from the comparison of the sequences of these new genes to those of previously characterized genes, and from computer modeling to infer the structure of specific gene products. In vitro assay systems can also often provide information on the function of gene products. These assays, as well as cell culture systems, have the advantage of being relatively high throughput and low cost. However, these systems lack the complexity of the whole organism. The inability to study the interaction of different organs and/or cell types limits the information that can be derived from these technologies. In vivo experiments, while more costly, can provide information that the above-mentioned systems cannot approach, due to the fact that they provide the metabolic, physiologic and pathologic complexity absent in these other systems. Transgenic technology can be thought of as two individual technologies, gene addition and gene modification (Tab. 1), which allow researchers to perform genetic engineering to investigate the roles of specific genes during development and in various disease states. Gene addition often involves the overexpression of genes, while gene targeting is most often used to create null mutations or “knock outs”. Characterizing and studying the resulting animals can often contribute great insights into the role that individual genes may play in normal physiology and in various disease states. In addition, this technology provides the potential to create new in vivo disease and metabolic models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Swanson ME, Grass DS, Ciofalo VB (1994) Transgenic and gene targeting technology in drug discovery. Annual Rep Med Chem 29: 265–274

    Article  CAS  Google Scholar 

  2. Hogan B, Beddington R, Costantini F, Lacy E (1994) Manipulating the mouse embryo: a laboratory manual, second edition. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  3. McKnight RA, Shamay A, Sankaran L, Wall RJ, Hennighausen L (1992) Matrix-attachment regions can impart position-independent regulation of a tissue-specific gene in transgenic mice. Proc Natl Acad Sci USA 89: 6943–6947

    Article  PubMed  CAS  Google Scholar 

  4. Kioussis D, Festenstein R (1997) Locus control regions: overcoming heterochromatin-induced gene activation in mammals. Curr Opin Genet Dey 7: 614–619

    Article  CAS  Google Scholar 

  5. Palmiter RD, Behringer RR, Quaife CJ, Maxwell F, Maxwell IH, Brinster RL (1987) Cell lineage ablation in transgenic mice by cell-specific expression of a toxin gene. Cell 50: 435–443

    Article  PubMed  CAS  Google Scholar 

  6. Saez E, No D, West A, Evans RM (1997) Inducible gene expression in mammalian cells and transgenic mice. Curr Opin Biotechnol 8: 608–616

    Article  PubMed  CAS  Google Scholar 

  7. Valera A, Solanes G, Fernandez-Alvarez J, Pujol A, Ferrer J, Asins G, Gomis R, Bosch F (1994) Expression of GLUT-2 antisense RNA in ß cells of transgenic mice leads to diabetes. J Biol Chem 269: 28543–28546

    PubMed  CAS  Google Scholar 

  8. Larsson S, Hotchkiss G, Andang M, Nyholm T, Inzunza J, Jansson I, Ahrlund-Richter L (1994) Reduced 132-microglobulin mRNA levels in transgenic mice expressing a designed hammerhead ribozyme. Nuc Acids Res 22: 2242–2248

    Article  CAS  Google Scholar 

  9. Hasty P, Bradley A (1993) Gene targeting vectors for mammalian cells. In: AL Joyner (ed): Gene targeting: a practical approach. IRL Press, Oxford, 1–31

    Google Scholar 

  10. Mansour SL, Thomas KR, and Capecchi MR (1988) Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336: 348–352

    Article  PubMed  CAS  Google Scholar 

  11. Gu H, Marth JD, Orban PC, Mossmann H, Rajewsky K (1994) Deletion of a DNA polymerase 13 gene segment in T cells using cell type-specific gene targeting.- Science 265: 103–106

    Article  PubMed  CAS  Google Scholar 

  12. Keffer J, Probert L, Cazlaris H, Georgopoulos S, Kaslaris E, -Kioussis D, Kollias G (1991) Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. EMBO J 10: 4025–4031

    CAS  Google Scholar 

  13. Probert L, Plows D, Kontogeorgos G, Kollias G (1995) The type I interleukin-1 receptor acts in series with tumor necrosis factor (TNF) to induce arthritis in TNF-transgenic mice. Eur J Immunol 25: 1794–1797

    Article  PubMed  CAS  Google Scholar 

  14. Pasparakas M, Alexopoulou L, Episkopou V, Kollias G (1996) Immune and inflammatory responses in TNF alpha deficient mice: a critical requirement for TNF alpha in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral response. J Exp Med 184: 1397–1411

    Article  Google Scholar 

  15. Neurath MF, Fuss I, Pasparakis M, Alexopoulou L, Haralambous S, Meyer zumBuschenfelde K-H, Strober W, Kollias G (1997) Predominant pathogenic role of tumor necrosis factor in experimental colitis in mice. Eur J Immunol 27: 1743–1750

    Article  PubMed  CAS  Google Scholar 

  16. Cambell IL, Abraham CR, Masliah E, Kemper P, Inglis JD, Oldstone MBA, Mucke L (1993) Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6. Proc Natl Acad Sci USA 90: 10061–10065

    Article  Google Scholar 

  17. Heyser CJ, Masliah E, Samimi A, Cambell IL, Gold LH (1997) Progressive decline in avoidance learning paralleled by inflammatory neurodegeneration in transgenic mice expressing interleukin 6 in the brain. Proc Natl Acad Sci USA 94: 1500–1505

    Article  PubMed  CAS  Google Scholar 

  18. Sligh JEJ, Ballantyne CM, Rich SS, Hawkins HK, Smith CW, Bradley A (1993) Inflammatory and immune responses are impaired in mice deficient in intercellular adhesion molecule 1. Proc Natl Acad Sci USA 90: 8529–8533

    Article  PubMed  CAS  Google Scholar 

  19. Hallahan DE, Virudachalam S (1997) Intercellular adhesion molecule 1 knockout abrogates radiation induced pulmonary inflammation. Proc Natl Acad Sci USA 94: 64326437

    Google Scholar 

  20. Rauschmayr T, Groves RW, Kupper TS (1997) Keratinocyte expression of the type 2 interleukin 1 receptor mediates local and specific inhibition of the interleukin 1-mediated inflammation. Proc Natl Acad Sci USA 94: 5814–5819

    Article  PubMed  CAS  Google Scholar 

  21. Gao J-L, Wynn TA, Chang Y, Lee EJ, Broxmeyer HE, Cooper S, Tiffany HL, Westphal H, Kwon-Chung J, Murphy (1997) Impaired host defense, hematopoiesis, granuloma-tous inflammation and type 1-type 2 cytokine balance in mice lacking CC chemokine receptor. J Exp Med 185: 1959–1968

    CAS  Google Scholar 

  22. Rosloniec EF, Brand DD, Myers LK, Whittington KB, Gumanovskaya M, Zaller DM, Woods A, Altmann DM, Stuart JM, Kang AH (1997) An HLA-DR1 transgene confers susceptibility to collagen-induced arthritis elicited with human type II collagen. J Exp Med 185: 1113–1122

    Article  PubMed  CAS  Google Scholar 

  23. Griffiths RJ, Smith MA, Roach ML, Stock JL, Stam EJ, Milici AJ, Scampoli DN, Eskra JD, Byrum RS, Koller BH, McNeish JD (1997) Collagen-induced arthritis is reduced in 5-lipoxygenase-activating protein-deficient mice. J Exp Med 185: 1123–1129

    Article  PubMed  CAS  Google Scholar 

  24. Grass DS, Felkner RH, Chiang M-Y, Wallace RE, Nevalainen TJ, Bennett CF, Swanson ME (1996) Expression of human group II PLA2 in transgenic mice results in epidermal hyperplasia in the absence of inflammatory infiltrate. J Clin Invest 97: 2233–2241

    Article  PubMed  CAS  Google Scholar 

  25. Chapdelaine JM, Ciofalo VB, Grass DS, Felkner R, Wallace RE, Swanson ME (1995) Human extracellular (type II) phospholipase A2 (PLA2) transgenic mice provide a tool to determine the role of PLA2 in inflammatory conditions. Arthritis and Rheumatism 38: S293

    Google Scholar 

  26. deBeer FC, deBeer MC, van der Westhuyzen DR, Castellani LW, Lusis AJ, Swanson ME, Grass DS (1997) Secretory non-pancreatic phospholipase A2: influence on lipoprotein metabolism. J Lipid Res 38: 2232–2239

    CAS  Google Scholar 

  27. Ivandic B, Castellani L, Wang X-P, Qiao JH, Mehrabian M, Navab M, Fogelman A, Grass DS, Swanson ME, deBeer MC, deBeer F, Lusis AJ (1998) Role of group II secretory PLA2 in atherosclerosis: 1. Increased atherosclerosis and altered lipoproteins in transgenic mice expressing group IIa PLA2; in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Basel AG

About this chapter

Cite this chapter

Grass, D.S. (1999). Transgenics. In: Morgan, D.W., Marshall, L.A. (eds) In Vivo Models of Inflammation. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7775-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7775-6_12

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-7777-0

  • Online ISBN: 978-3-0348-7775-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics