Skip to main content

Clinical PET in Oncology

  • Chapter
  • 128 Accesses

Part of the book series: Advances in Pharmacological Sciences ((APS))

Summary

18-FDG is accumulated in cancer cells. It has been proven useful to image a variety of tumors in conjunction with whole-body positron emission tomography. This review details some of the indications of PET at various stages of the cancerous process: differential diagnosis, preoperative staging, diagnosis of residual or recurrent disease as well as follow-up of therapy. Consideration of several potential improvements in clinical PET and of the need for careful patients selection conclude this review.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Warburg 0, Wind F, Neglers E. On the metabolism of tumors in the body. In: Metabolism of tumors. Warburg O, ed. Constable, London 1930, 254–270.

    Google Scholar 

  2. Hiraki Y, Rosen OM, Birnbaum MJ. Growth factors rapidly induce expression of the glucose transporter gene. J Biol Chem 1988; 27 13655–13662.

    Google Scholar 

  3. Shawver LK, Olson SA, White MK, Weber MH. Degradation and biosynthesis of the glucose transporter protein in chicken embryo fibroblasts transformed by the src oncogene. Mol Cell Biol 1987; 7: 2112–2118.

    PubMed  CAS  Google Scholar 

  4. Birnbaum MJ, Haspel HC, Rosen OM. Transformation of rat fibroblasts by FSV rapidly increases glucose transporter gene transcription. Science 1987; 235: 1495–1498.

    Article  PubMed  CAS  Google Scholar 

  5. Flier JS, Mueckler MM, Usher P, Lodish H. Elevated levels of glucose transport and trasporter messenger RNA are induced by ras or src oncogenes. Science 1987; 235: 1492–1495.

    Article  PubMed  CAS  Google Scholar 

  6. Yamamoto T, Seino Y, Fukumoto H et al. Overexpression of facilitated glucose transporter genes in human cancer. Biochem Biophys Res Commun 1990; 170: 223–230.

    Article  PubMed  CAS  Google Scholar 

  7. Nishioka T, Oda Y, Seino Y et al. Distribution of the glucose transporters in human brain tumors. Cancer Res 1992; 52: 3972–3979.

    PubMed  CAS  Google Scholar 

  8. Gallagher BM, Fowler JS, Gutterson NI et al. Metabolic trapping as a principle of radiopharmaceutical design: Some factors responsible for the biodistribution of F-18–2-deoxy2-fluoro-D-glucose. J Nucl Med 1989; 19: 1154–1161.

    Google Scholar 

  9. Sokoloff L, Reivich M, Kennedy C et al. The (14C)deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 1977; 28: 897–916.

    Article  PubMed  CAS  Google Scholar 

  10. Di Chiro G, de la Paz RL, Brooks Ra et al. Glucose utilization of cerebral gliomas measured by F-18-fluorodeoxyglucose and positron emission tomography. Neurology 1982; 32: 1323 1329.

    Google Scholar 

  11. Okazumi S, Isono K, Enomoto K et al. evaluation of liver tumors using flurorine-18fluorodeoxyglucose PET: characterization of tumor and assessment of effect of treatment. J Nucl Med 1992; 33: 333–339.

    PubMed  CAS  Google Scholar 

  12. Okada J, Yoshikawa K, Itami M et al. Positron emission tomography using fluorine-18fluorodeoxyglucose in malignant lymphoma: a comparison with proliferative activity. J Nucl Med 1992; 33: 325–329.

    PubMed  CAS  Google Scholar 

  13. Adler LP, Blair HF, Williams RP et al. Grading liposarcomas with PET using 18F-FDG. J Comput Assist Tomogr 1990; 14: 960–962.

    Article  PubMed  CAS  Google Scholar 

  14. Strauss LG, Conti PS. The applications of PET in clinical oncology. J Nucl Med 1991; 32: 623–648.

    Google Scholar 

  15. Higashi K, Clavo AC, Wahl RL. Does FDG uptake measure proliferative activity of human cancer cells ? In vitro comparison with DNA flow cytometry and tritiated thymidine uptake. J Nucl Med 1993; 34: 414–419.

    PubMed  CAS  Google Scholar 

  16. Kubota K, Ishiwata K, Kubota R et al. Tracer feasibility for monitoring tumor radiotherapy: a quadruple tracer study with fluorine-18-fluorodeoxyglucose or fluorine-18-fluorodeoxyuridine, L- {methyl-14C}methionine, {6–3H}thymidine, and gallium-67. J Nucl Med 1991; 32: 2118 2123.

    Google Scholar 

  17. Lowe VJ, Hoffman JM, DeLong DM et al. Semiquantitative and visual analysis of FDG-PET images in pulmonary abnormalities. J Nucl Med 1994; 35: 1771–1776.

    PubMed  CAS  Google Scholar 

  18. Dewan NA, Reeb SD, Gupta NC et al. PET-FDG imaging and transthoracic needle lung aspiration biopsy in evaluation of pulmonary lesions. A comparative risk-benefit analysis. Chest 1995; 108: 441–446.

    Article  PubMed  CAS  Google Scholar 

  19. Bury T, Paulus P, Corhay JL et al. Apport diagnostique de la tomographie à émission de positons dans l’évaluation d’une opacité pulmonaire unique: étude préliminaire chez 30 patients. Médecine Nucléaire–Imagerie fonctionnelle et métabolique 1996; 20: 77–82.

    Google Scholar 

  20. Bury T, Dowlati A, Paulus P et al. Evaluation of the solitary pulmonary nodule by positron emission tomography imaging. Eur Resp J 1996: in press.

    Google Scholar 

  21. Minn H, Zasadny KR, Quint LE et al. Lung cancer: reproducibility of quantitative measurements for evaluating 2-[F-18]-fluoro-2-deoxy-D-glucose uptake at PET. Radiology 1995; 196: 167–173.

    Google Scholar 

  22. Coleman RE, Cascade E, Gupta NC et al. Clinical application and economic implications of PET in the assessment of solitary pulmonary nodules. A retrospective study. Proceedings, Sixth International PET Conference, ICP, Fairfax, Virginia, U.S.A., 1994.

    Google Scholar 

  23. Bares R, Klever P, Hauptmann S et al. F-18 Fluorodeoxyglucose PET in vivo evaluation of pancreatic glucose metabolism for detection of pancreatic cancer. Radiology 1994, 192, 79–83.

    PubMed  CAS  Google Scholar 

  24. Friess H, Langhans J, Ebert M et al. Diagnosis of pancreatic cancer by 2[18F]-fluoro-2-deoxy-D-glucose positron emission tomography. Gut 1995, 36: 771–777.

    Article  PubMed  CAS  Google Scholar 

  25. Hawkins R. Pancreatic tumors: imaging with PET. Radiology 1995, 95, 320–322

    Google Scholar 

  26. Inokuma T, Tamaki N, Torizuka T et al. Value of fluorine-18-fluorodeoxyglucose and thallium-201 in the detection of pancreatic cancer. J Nucl Med 1995; 36: 229–235.

    Google Scholar 

  27. Wahl RL, Cody R, Hutchins G et al. Positron emission tomographic scanning of primary and metastatic breast with the radiolabeled glucose analogue 2-deoxy-2(18F)fluoro-D-glucose. N. Engl J Med 1991; 324: 200.

    PubMed  CAS  Google Scholar 

  28. Adler LP, Crowe JP, Al-Kaisi NK, Sunshine JL. Evaluation of breast masses and axillary lymph nodes with (F-18)2-deoxy-2-fluoro-D-glucose PET. Radiology 1993; 187: 743–750.

    PubMed  CAS  Google Scholar 

  29. Avril N, Janicke F, Dose J et al. FDG-PET evaluation of pelvic masses suspicious for primary or recurrent ovarian cancer. J Nucl Med 1994; 35: 231 P.

    Google Scholar 

  30. Lewis P., Griffin S., Marsden P. et al. Whole-body 18F-fluorodeoxyglucose positron emissiontomography in preoperative evaluation of lung cancer. Lancet 1994; 344: 1265–1266.

    Article  PubMed  CAS  Google Scholar 

  31. Bury T, Dowlati A, Paulus P et al. Staging of non small cell lung cancer by whole-body ‘8FDG-PET. Eur J Nucl Med 1996; 23: 204–206.

    Article  PubMed  CAS  Google Scholar 

  32. Patronas NJ, Di Chiro GD, Kufta C et al. Prediction of survival in glioma patients by PET. J Neurosurg 1986; 62: 816–822.

    Google Scholar 

  33. Strauss LG, Clorius RI, Schlag et al. Recurrence of colorectal tumor: PET evaluation. Radiology 1989; 170: 329–332.

    PubMed  CAS  Google Scholar 

  34. Beets G, Penninckx F, Schiepers C et al. Clinical value of whole-body positron emission tomography with [18F]fluorodeoxyglucose in recurrent colorectal cancer. Br J Surg 1994; 81: 1666–1670.

    Article  PubMed  CAS  Google Scholar 

  35. Wahl RI, Zasadny K, Helvie M et al. Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography. Initial evaluation. J Clin Oncol 1993; 11: 2101–2111.

    Google Scholar 

  36. Gupta NC, Bowman BM, Frank AL et al. PET-FDG imaging for follow-up evaluation of treated colorectal cancer. Radiology 1991; 199: 181 P.

    Google Scholar 

  37. Institute for Clinical PET Colorectal Cancer Task Force. Clinical application and economic implications of PET in the assessment of colorectal cancer recurrence: a retrospective study. Abstract from the 1994 ICP Meeting.

    Google Scholar 

  38. Hoekstra OS, Ossenkoppele GJ, Golding R et al. Early treatment response in malignant lymphoma as determined by planar fluorine-18-fluorodeoxyglucose scintigraphy. J Nucl Med 1993; 34: 1706–1710.

    PubMed  CAS  Google Scholar 

  39. Okada J, Oonishi H, Yoshikawa K et al. FDG-PET for predicting the prognosis of malignant lymphoma. Ann Nucl Med 1994, 8: 187–191.

    Google Scholar 

  40. Alavi JB, Alavi A, Chawluk J et al. Positron emission tomography in patients with glioma: A predictor of prognosis. Cancer 1988; 62: 1074–1078.

    Article  PubMed  CAS  Google Scholar 

  41. Reisser C, Haberkorn U, Dimitrakopoulou-Strauss A et al. Chemotherapeutic management of head and neck malignancies with positron emission tomography. Arch Otolaryngol Head Neck Surg 1995; 121: 272–276.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Basel AG

About this chapter

Cite this chapter

Rigo, P. et al. (1997). Clinical PET in Oncology. In: Bergmann, H., Kroiss, A., Sinzinger, H. (eds) Radioactive Isotopes in Clinical Medicine and Research. Advances in Pharmacological Sciences. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7772-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7772-5_1

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-7774-9

  • Online ISBN: 978-3-0348-7772-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics