Skip to main content

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 17))

Abstract

Writing the form associated with a positive matrix as a sum of positive squares, there appears a sequence of complex numbers determining the given matrix. In a certain sense, these calculations are equivalent to the classical algorithm of I.Schur [24] which associates a similar sequence of parameters to an analytic contractive function on the unit disc (such sort of parameters are known as Schur-Szegö parameters). The formalism using these Schur-Szegö parameters (we call it Schur analysis) can be extended to a general framework (operators on Hilbert spaces — see [5], where the operatorial version of the Schur-Szegö parameters is called choice sequence) and can be used to solve some extension problems (as Carathéodory-Fejér problem, Nehari problem and so on — see [1], [5]) and to describe the Kolmogorov decomposition of positive-definite kernels on the set of integers — see [13].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamjan, V.M.; Arov, D.Z.; Krein, M.G.: Infinite Hankel matrices and generalized Caratheodory-Fejer and Schur problems (Russian), Funck. Analiz. Prilozen. 2: 4 (1968), 1–17.

    MathSciNet  Google Scholar 

  2. Adamjan,V.M.; Arov,D.Z.; Krein, M.G.: Analytic properties of Schmidt pairs for a Hankel operator and the generalized Schur-Takagi problem (Russian), Math. Sb. 86 (128) (1971), 34–75.

    MathSciNet  Google Scholar 

  3. Adamjan, V.M.; Arov, D.Z.; Krein, M.G.: Infinite Hankel block matrices and related extension problems (Russian), Izv. Akad. Nauk. Arm jan. SSR. Ser. Mat. 6 (1971), 87–112.

    MathSciNet  Google Scholar 

  4. Arov, D.Z.; Krein, M.G.: Problem of search of the minimum of entropy in indeterminate extension problems (Russian), Funck. Analiz. Prilozen. 15 (1981), 61–64.

    MathSciNet  Google Scholar 

  5. Arsene, Gr.; Ceausescu, Z.; Foias, C.: On intertwining dilations. VIII, J. Operator Theory 4 (1980), 55–91.

    MathSciNet  MATH  Google Scholar 

  6. Arsene, Gr.; Constantinescu, T.: The structure of the Naimark dilation and Gaussian stationary processes, Integral Equations Operator Theory, 8 (1985), 181–204.

    Article  MathSciNet  MATH  Google Scholar 

  7. Arsene, Gr.; Gheondea, A.: Completing matrix contractions, J. Operator Theory, 7 (1982), 179–189.

    MathSciNet  MATH  Google Scholar 

  8. Ball, J.A.; Helton, J.W.: A Beurling-Lax theorem for the Lie group U(m,n) which contains most classical interpolation theory, J. Operator Theory 9 (1983), 107–142.

    MathSciNet  MATH  Google Scholar 

  9. Burg, J. P.: Maximal entropy spectral analysis, Ph.D. dissertation, Geophysics Dept., Stanford University, Stanford, CA, May 1975.

    Google Scholar 

  10. Chamfy, C.: Functions méromorphes dans le cercle-unité et leurs series de Taylor, Ann. Inst. Fourier 8 (1958), 211–251.

    Article  MathSciNet  MATH  Google Scholar 

  11. Constantinescu, T.: On the structure of positive Toeplitz forms, in Dilation theory, Toeplitz operators and other topics,Birkhäuser Verlag, 1983, pp.127–149.

    Google Scholar 

  12. Constantinescu, T.: On the structure of the Naimark dilation, J. Operator Theory, 12 (1984), 159–175.

    MathSciNet  MATH  Google Scholar 

  13. Constantinescu, T.: The structure of nx n positive operator matrices, INCREST preprint, no.14/1984, 54/1984.

    Google Scholar 

  14. Geronimus, Ja. L.: Orthogonal polynomials, New York, Consultants Bureau, 1961.

    MATH  Google Scholar 

  15. Grenander, U.; Szegö, G.: Toeplitz forms and their applications, University of California Press, 1950.

    Google Scholar 

  16. Iohvidov, I. S.; On the theory of indefinite Toeplitz forms (Russian), Dok1. Akad. Nauk. SSSR 101: 2 (1955), 213–216.

    MathSciNet  Google Scholar 

  17. Iohvidov, I. S.; Krein, M. G.: Spectral theory of operators in spaces with an indefinite metric. II (Russian), Trudy Moskov. Mat. Obsc. 8 (1959), 413–496.

    MathSciNet  Google Scholar 

  18. Iohvidov, I. S.; Krein, M.G.; Langer, H.: Introduction to the spectral theory of operators in spaces with an indefinite metric, Akademie-Verlag, Berlin, 1982.

    MATH  Google Scholar 

  19. Kailath, T.; Porat, B. State-space generators for orthogonal polynomials, in Prediction theory and harmonic analysis, North-Holland, 1983.

    Google Scholar 

  20. Krein, M.G.: On the location of the roots of polynomials which are orthogonal on the unit circle with respect to an indefinite weight (Russian), Teor. Funkcii, Funck. Analiz. Prilozen 2 (1966), 131–137.

    MathSciNet  MATH  Google Scholar 

  21. Krein, M. G.; Langer, H.: Uber einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im Raume Tr zusammenhangen. Teil I., Math. Nachr. 77 (1977), 187–236;

    Article  MathSciNet  MATH  Google Scholar 

  22. Krein, M. G.; Langer, H.: Uber einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im Raume Tr zusammenhangen. Teil II, J. Function5I Analysis 30 (1978), 390–447;

    Article  MathSciNet  MATH  Google Scholar 

  23. Krein, M. G.; Langer, H.: Uber einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im Raume Tr zusammenhangen. III Part(1), Beiträge zur Analysis 14 (1981), 25–40;

    Google Scholar 

  24. Krein, M. G.; Langer, H.: Uber einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im Raume Tr zusammenhangen. III Part(2), Beiträge zur Analysis 15 (1981), 27–45.

    Google Scholar 

  25. Potapov, V.P.: The multiplicative structure of J-contractive (Russian), Trudy Moskov. Mat. Obsc. 4 (1955), 125–236.

    MathSciNet  MATH  Google Scholar 

  26. Redheffer, R. M.: Inequalities for a matrix Ricatti equation, 8 (1959), 349–377.

    MathSciNet  MATH  Google Scholar 

  27. Schur, I.: Über Potenzreihen, die im Innern des Einheitskreises J.Reine Angew. Math. 148 (1918), 122–145.

    Google Scholar 

  28. Sz.-Nagy, B.; Foias, C.: Harmonic analysis of operators on Amsterdam-Budapest, 1970.

    Google Scholar 

  29. Takagi, T.: On an algebraic problem related to an analytic theorem Carathéodory and Fejér, Japan. J. Math. 1 (1924), 83–93.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Basel AG

About this chapter

Cite this chapter

Constantinescu, T. (1986). Schur Analysis for Matrices with a Finite Number of Negative Squares. In: Douglas, R.G., Pearcy, C.M., Sz.-Nagy, B., Vasilescu, FH., Voiculescu, D., Arsene, G. (eds) Advances in Invariant Subspaces and Other Results of Operator Theory. Operator Theory: Advances and Applications, vol 17. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7698-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7698-8_7

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-7700-8

  • Online ISBN: 978-3-0348-7698-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics