Skip to main content

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 17))

  • 214 Accesses

Abstract

In this note we study some spectral properties of a class of operators. Denote by I the closed interval [0,1] and by LP the usual Banach space of (equivalence classes coof) measurable functions on I with integrable p-th power for p ɛ [1, ∞), while L stands for the space of essentially bounded functions. We use the ordinary Lebesgue measure in all these definitions. Furthermore, denote by C the Banach space of continuous functions on I with the supremum norm. Note that the space C can be regarded as a closed subspace of L. In what follows, the symbol X will stand either for some of the spaces LP with p ɛ [1,∞], or for the space C, unless stated otherwise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albrectht, E.J.; Vasilescu, F.-H.: On spectral capacities, Rev. Roumaine Math. Pures Appl. 19 (1974), 701–705.

    MathSciNet  Google Scholar 

  2. Apostol, C.: Spectral decomposition and functional calculus, Rev. Roumaine Math. Pures Appl. 13 (1968), 1481–1528.

    MathSciNet  MATH  Google Scholar 

  3. Apostol, C.: Operators quasi-similar to a normal operator, Proc. Amer. Math. Soc. 53 (1975), 104–106.

    MathSciNet  MATH  Google Scholar 

  4. Apostol, C.: The spectral flavour of Scott Brown’s techniques, J. Operator Theory 6 (1981), 3–12.

    MathSciNet  MATH  Google Scholar 

  5. Colojoarâ, I.; Foias, C.: Theory of generalized spectral operators,Gordon and Breach, New York,’1968.

    Google Scholar 

  6. Dunford, N.; Schwartz, J. T.: Linear operators. Parts I, II, III, Wiley-Interscience, New York, 1958, 1963, 1971.

    Google Scholar 

  7. Fialkov, L.: A note on quasisimilarity. II, Pacific J. Math. 70 (1977), 151–162.

    Article  MathSciNet  Google Scholar 

  8. Foias, C.: Une application des distributions vectorielles a la theorie spectrale, BulL i Sci. Math. (2) 84 (1960), 147–158.

    MathSciNet  MATH  Google Scholar 

  9. Foias, C.: Spectral maximal spaces and decomposable operators in Banach space, Arch. Math. 14 (1963), 341–349.

    Article  MathSciNet  MATH  Google Scholar 

  10. Foias, C.: Spectral capacities and decomposable operators, Rev. Roumaine Math. Pures Appl. 13 (1968), 1539–1545.

    MathSciNet  MATH  Google Scholar 

  11. Kantorovitz, Sh.: Classification of operators by means of their operational calculus, Trans. Amer. Math. Soc. 115 (1965), 194–224.

    Article  MathSciNet  MATH  Google Scholar 

  12. Kantorovitz, Sh.: A Jordan decomposition for operators in Banach space, Trans. Amer. Math. Soc. 120 (1965), 526–550.

    Article  MathSciNet  MATH  Google Scholar 

  13. Kantorovitz, 5h.: The semi-simplicity manifold of arbitrary operators, Trans. Amer. Math. Soc. 123 (1966), 241–252.

    Google Scholar 

  14. Kantorovitz, Sh.: Spectral theory of Banach space operators, Lecture Notes Math. 1012, Springer, Berlin, 1983.

    Google Scholar 

  15. Omladic, M.: Spectral invariant subspaces of bounded operators (Slovene), Ph. D. thesis, E. K. University of Ljubljana, 1980.

    Google Scholar 

  16. Ringrose, J. R.: On well-bounded operators. Il, Proc. London Math. Soc. (3) 13 (1963), 613–638.

    Article  MathSciNet  MATH  Google Scholar 

  17. Sine, R. C. Spectral decompositions of a class of operators, Pacific J. Math. 14 (1964), 333–352.

    Article  MathSciNet  MATH  Google Scholar 

  18. Smart, D. R.: Conditionally convergent spectral expansions, J. Austral. Math. Soc. 1(1959/60), 319–333.

    Google Scholar 

  19. Sz.-Nagy, B.; Foias, C. Harmonic analysis of operators on Hilbert space, North-Holland Pub!. Co., Amsterdam, 1970.

    Google Scholar 

  20. Turner, J. K.: On well-bounded and decomposable operators, Proc. London Math. Soc. (3) 37 (1978), 521–544.

    Article  MathSciNet  MATH  Google Scholar 

  21. Vasilescu, F.-H.: An application of Taylor’s functional calculus, Rev. Roumaine Math. Pures Appl. 19 (1974), 1165–1167.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Basel AG

About this chapter

Cite this chapter

Omladič, M. (1986). Some Spectral Properties of an Operator. In: Douglas, R.G., Pearcy, C.M., Sz.-Nagy, B., Vasilescu, FH., Voiculescu, D., Arsene, G. (eds) Advances in Invariant Subspaces and Other Results of Operator Theory. Operator Theory: Advances and Applications, vol 17. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7698-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7698-8_19

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-7700-8

  • Online ISBN: 978-3-0348-7698-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics