Advertisement

Approximative Flächeninterpolation

  • Franz Jürgen Delvos
Part of the International Series of Numerical Mathematics book series (ISNM, volume 30)

Abstract

In his paper [7] Gordon has presented a lattice theoretical approach to multivariate approximation. In particular, the blending method [1], [6] is characterized as a maximal projection method. In practice the blending method needs transfinite information. To avoid this difficulty, Gordon has proposed a scheme of numerical approximation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Birkhoff, G. and Gordon, W. J.: The draftman’s and related equations. J. Approximation Theory 1 (1968), 199–208.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Delvos, F. J. and Kösters, H. W.: On the variational characterization of bivariate interpolation methods. Math. Z. (erscheint demnâchst).Google Scholar
  3. 3.
    Delvos, F. J.: On surface interpolation. J. Approximation Theory (erscheint demnächst).Google Scholar
  4. 4.
    Delvos, F. J. und Malinka, G.: Das Blendingschema von Spline Systemen, in “Spline-Funktionen” (K. Böhmer, G. Meinardus, W. Schempp (eds.)). Mannheim-Wien-Zürich, BI-Wissenschaftsverlag 1974.Google Scholar
  5. 5.
    Gordon, W. J.: Spline-blended surface interpolation through curve networks. J. Math. Mech. 18 (1969), 931–952.MathSciNetzbMATHGoogle Scholar
  6. 6.
    Gordon, W. J.: Blending-function methods of bivariate and multivariate interpolation and approximation, SIAM J. Numer. Analysis 8 (1971), 158–177.zbMATHCrossRefGoogle Scholar
  7. 7.
    Gordon, W. J.: Distributive lattices and the approximation of multivariate functions, in “Approximations with special emphasis on spline functions” ( I. J. Schoenberg (ed.)), New York-London, Academic Press 1969.Google Scholar
  8. 8.
    Haussmann, W.: On multivariate spline systems. J. Approximation Theory 11 (1974), 285–305.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Haussmann, W. and Münch, H. J.: Topological spline systems, in “Spline-Funktionen” (K. BBhmer, G. Meinardus, W. Schempp (eds.)). Mannheim-Wien-Zürich, BI-Wissenschaftsverlag 1974.Google Scholar
  10. 10.
    Haussmann, W. and Münch, H. J.: On the construction of multivariate spline systems, in “Approximation Theory” (G. G. Lorentz (ed.)). New York-London, Academic Press 1973.Google Scholar
  11. 11.
    Luenberger, G. G.: Optimization by vector space methods. New York London, Wiley 1969.zbMATHGoogle Scholar
  12. 12.
    Nashed, M. Z.: Generalized inverses, normal solvability, and iteration for singular operator equations, in “Nonlinear functional analysis and applications” (L. B. Ball (ed.)). New York - London, Academic Press 1971.Google Scholar
  13. 13.
    Sard, A.: Optimal approximation. J. Functional Analysis 1(1967), 222–244; 2 (1968), 368–369.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Sard, A.: Approximation based on nonscalar observations. J. Approximation Theory 8 (1973), 315–334.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 1976

Authors and Affiliations

  • Franz Jürgen Delvos
    • 1
  1. 1.Lehrstuhl für Mathematik IGesamthochschule SiegenSiegen 21Germany

Personalised recommendations