We consider special boundary control systems for parabolic differential equations where the target set is described by a convex body of continuous functions. In this paper we are mainly interested in time-optimal control problems.


Convex Body Parabolic Differential Equation Minimum Norm Problem Dann Gilt Infinite Dimensional Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    BUTKOVSKIY, A.G.: Distributed control systems. New York, American Elsevier Publ.Comp. 1969.zbMATHGoogle Scholar
  2. [2]
    BUTKOVSKIY, A.G., A.I. EGOROV and K.A. LURIE: Optimal control of distributed systems (A survey of Soviet publications).SIAM J. Control 6 (1968) 437–476.Google Scholar
  3. [3]
    FALB, P.L.: Infinite dimensional control problems I: On the closure of the set of attainable states for linear systems. J. Math. Anal.Appl. 9 (1964) 12–22.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    FATTORINI, H.O.: Time-optimal control of solutions of operational differential equations.SIAM J. Control 2 (1964), 54–59.MathSciNetzbMATHGoogle Scholar
  5. [5]
    FATTORINI, H.O.: The time-optimal control problem in Banach spaces.Applied Mathematics and Optimization 1 (1974), 163–188.MathSciNetzbMATHGoogle Scholar
  6. [6]
    FRIEDMAN, A.: Optimal control for parabolic equations. J. Math. Anal.Appl. 18 (1967), 479–491.zbMATHCrossRefGoogle Scholar
  7. [7]
    FRIEDMAN, A.: Optimal control in Banach spaces. J. Math. Anal.Appl. 19 (1967), 35–55.zbMATHCrossRefGoogle Scholar
  8. [8]
    FRIEDMAN, A.: Optimal control in Banach space with fixed end-points. J. Math. Anal.Appl. 24 (1968), 161–181.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    GLASHOFF, K.: Optimal control of one-dimensional linear parabolic differential equations. Erscheint in: BULIRSCH, R., W. OETTLI und J. STOER (Hrsg.): Optimierungstheorie und optimale Steuerungen, Tagungsbericht über die Oberwolfachtagung vom 18.11.-23.11.1974. Berlin-Heidelberg-New York, Springer-Verlag 19 75.Google Scholar
  10. [10]
    GLASHOFF, K.,und W. KRABS: Dualität und Bang-Bang-Prinzip bei einem parabolischen Rand-Kontrollproblem. Erscheint in: Bonner Mathematische. Schriften (1975).Google Scholar
  11. [11]
    KÖTHE, G.: Topologische lineare Räume I. 2. Aufl., Berlin-Heidelberg-New York, Springer-Verlag 1966.Google Scholar
  12. [12]
    LIONS, J.L.: Controle optimal des systemes gouvernés par des équations aux dérivées partielles.Paris, Dunod 1968.Google Scholar
  13. [13]
    LUENBERGER, D.G.: Optimization by vector space methods.New York-London-Sydney-Toronto, John Wiley and Sons 1969.Google Scholar
  14. [14]
    ROBINSON, A.C.: A survey of optimal control of distributed-parameter systems. Automatica 7 (1971), 371–388.zbMATHCrossRefGoogle Scholar
  15. [15]
    WECK, N.: Über Existenz, Eindeutigkeit und das “Bang-Bang-Prinzip” bei Kontrollproblemen aus der Wärmeleitung. Erscheint in: Bonner Mathematische Schriften (1975).zbMATHGoogle Scholar
  16. [16]
    YEGOROV, Yu.V.: Some problems in the theory of optimal control. USSR Comp.Math.Math.Phys. 3 (1963), 1209–1232.CrossRefGoogle Scholar
  17. [17]
    YOSIDA, K.: Functional analysis. 3rd ed., Berlin-Heidelberg-New York, Springer-Verlag 19 71.Google Scholar

Copyright information

© Springer Basel AG 1976

Authors and Affiliations

  • Frank Lempio
    • 1
  1. 1.Institut für Angewandte Mathematik und Statistikder Universität WürzburgD - 87 WürzburgBundesrepublik Deutschland

Personalised recommendations