An Application of a Restricted Range Version of the Differential Correction Algorithm to the Design of Digital Systems

  • E. H. KaufmanJr.
  • G. D. Taylor
Part of the International Series of Numerical Mathematics book series (ISNM, volume 30)


The differential correction algorithm of Cheney and Loeb uses linear programming to find good generalized rational approximations on a finite point set. An expositöry discussion of numerical and theoretical results for this algorithm will be given. The application of a restricted range version of the algorithm to the design of digital filters will be considered, with a discussion of numerical results and such topics as continuity of the best approximation operator and degeneracy. A Fortran listing of this weighted, restricted range differential correction program is available upon request.


Extreme Point Rational Approximation Digital Filter Restricted Range Filter Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barrodale, I., Powell, M. J. D.,and Roberts, F. D. K.: The Differential Correction Algorithm for Rational.£~ Approximation. SIAM J. Numer. Anal., 9 (1972), 493–504.MathSciNetzbMATHGoogle Scholar
  2. 2.
    Belford, G. G., and Burkhalter, J. F.: A Differential Correction Algorithm for Exponential Curve Fitting. Technical report UIUC-CAC-73–92, Center for Advanced Computation, Univ. of Illinois, Urbana (1973).Google Scholar
  3. 3.
    Braess, D.: Die Konstruktion der TschebyscheffApproximierenden bei der Anpassung mit Exponential-summen. J. Approx. Theory, 3 (1970), 261–273.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Cheney, E. W.: Introduction to Approximation Theory. McGraw-Hill, New York, 1966.zbMATHGoogle Scholar
  5. 5.
    Cheney, E. W., and Loeb, H. L.: Two New Algorithms for Rational Approximation. Numer. Math., 3 (1961), 72–75.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Cheney, E. W., and Loeb, H. L.: On Rational Chebyshev Approximation. Numer. Math., 4 (1962), 124–127.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Cheney, E. W., and Loeb, H. L.: On the Continuity of Rational Approximation Operators. Arch. Rational riech. Anal., 21 (1966), 391–401.MathSciNetzbMATHGoogle Scholar
  8. 8.
    Cheney, E. W., and Southard, T. H.: A Survey of Methods for Rational Approximation with Particular Reference to a New Method based on a Formula of Darboux. SIAM Review, 5 (1963), 219–231.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Deczky, A. G.: Equiripple and Minimax (Chebyshev) Approximations for Recursive Digital Filters. IEEE Trans. Acoust., Speech, and Sig. Proc., ASSP-22 (1974), 98–111.Google Scholar
  10. 10.
    Dua, S. N., and Loeb, H. L.: Further Remarks on the Differential Correction Algorithm. SIAM J. Numer. Anal., 10 (1973), 123–126.MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Dudgeon, D. E.: Recursive Filter Design using Differential Correction. IEEE Trans. Acoust., Speech, and Sig. Proc., submitted.Google Scholar
  12. 12.
    Dunham, C. B.: Rational Chebyshev Approximation on Subsets. J. Approx. Theory, 1 (1968), 484–487.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Dunham, C. B.: Varisolvent Approximation on Subsets. Proc. of the International Symposium on Approx. Theory, Austin, Texas (January 1973), edited by G. G. Lorentz, Academic Press, 337–340.Google Scholar
  14. 14.
    Fraser, W., and Hart, J. F.: On the Computation of Rational Approximations to Continuous Functions. Comm. Assoc. Comput. Mach., 5 (1962), 401–403.zbMATHGoogle Scholar
  15. 15.
    Gimlin, D. R., Cavin, R. K. III, and Budge, M. C.,Jr.: A Multiple Exchange Algorithm for Best Restricted Approximations. SIAM J. Numer. Anal., 11 (1974), 219–231.MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Gutknecht, M: Ein Abstiegsverfahren für Gleichmässige Approximation, mit Anwendungen. Thesis, Eidgenössischen Technischen Hochschule Zürich, 1973.zbMATHGoogle Scholar
  17. 17.
    Helms, H. D.: Digital Filters with Equiripple or Minimax Responses. IEEE Trans. Audio and Electroacoustics, AU-19(1971), 85–93.Google Scholar
  18. 18.
    Hersey, H. S., Tufts, D. W., and Lewis, J. T.: Interactive Minimax Design of Linear Phase Nonrecursive Digital Filters Subject to Upper and Lower Function Constraints. IEEE Trans. Audio and Electroacoustics, AU-20(1972), 171–173.Google Scholar
  19. 19.
    Kaufman, E. H.,Jr. and Taylor, G. D.: An Application of Linear Programming to Rational Approximation. Rocky Mtn. J. of Math., 4 (1974), 371–373.MathSciNetzbMATHGoogle Scholar
  20. 20.
    Kaufman, E. H.,Jr. and Taylor, G. D.: Uniform Rational Approximation of Functions of Several Variables. Numerical Methods in Engineering, 9 (1975), 297–323.MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Kaufman, E. H., Jr. and Taylor, G. D.: Quadratic Convergence of the Differential Correction Algorithm. In preparation.Google Scholar
  22. 22.
    Lee, C. M. and Roberts, F. D. K.: A Comparison of Algorithms for Rational L Approximation. Math. Comp., 27 (1973), 111–121.MathSciNetzbMATHGoogle Scholar
  23. 23.
    Lewis, J. T.: Restricted Range Approximation and Its Application to Digital Filter Design. Math. Comp., to appear.Google Scholar
  24. 24.
    Loeb, H. L.: Approximation by Generalized Rationals. J. SIAM Numer. Anal., 3 (1966), 34–55.MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Loeb, H. L. and Moursund, D. G.: Continuity of the Best Approximation Operator for Restricted Range Approximations. J. Approx. Theory, 1 (1968), 391–400.MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Loeb, H. L., Moursund, D. G. and Taylor, G. D.: Uniform Rational Weighted Approximations Having Restricted Ranges. J. Approx. Theory, 1 (1968), 401–411.MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Maehly, H. J. and Witzgall, C.: Tschebyscheff-Approximationen in Kleinen Intervallen II. Numer. Math., 2 (1960), 293–307.MathSciNetCrossRefGoogle Scholar
  28. 28.
    Rabiner, L. R., Graham, N. Y., and Helms, H. D.: Linear Programming Design of IIR Digital Filters with arbitrary Magnitude Functions. IEEE Trans. Acoust., Speech, and Sig. Proc., ASSP-22 (1974), 117–123.Google Scholar
  29. 29.
    Rice, J. R.: The Approximation of Functions, II. Addison-Wesley, Reading, 1969.Google Scholar
  30. 30.
    Taylor, G. D.: Approximation by Functions Having Restricted Ranges III. J. Math. Anal. App1.,. 27 (1969), 241–248.zbMATHCrossRefGoogle Scholar
  31. 31.
    Taylor, G. D. and Winter, M. J.: Calculation of Best Restricted Approximations. SIAM J. Numer. Anal., 7 (1970), 248–255.MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Taylor, K. A.: Contributions to the Theory of Restricted Polynomial and Rational Approximation. Thesis, Michigan State University, 1970.Google Scholar
  33. 33.
    Thajchayapong, P. and Rayner, P. J. W.: Recursive Digital Filter Design by Linear Programming. IEEE Trans. Audio and Electro-acoustics. AU-21(1973), 107–112.Google Scholar
  34. 34.
    Werner, H.: Tschebyscheff-Approximation in Bereich der Rationalen Funktionen bei Vorliegen einer Guten Ausgangsnaherung. Arch. Rat. Mech. Anal., 10 (1962), 205–219.zbMATHCrossRefGoogle Scholar
  35. 35.
    Werner, H.: On the Rational Tschebyscheff Operator. Math. Zeitschr, 86 (1964), 317–326.zbMATHCrossRefGoogle Scholar
  36. 36.
    Werner, H.: Diskretisierung bei Tschebyscheff-Approximation mit Verallgemeinerten Rationalen Funktionen. ISNM, 9 (1968), 381–390.Google Scholar
  37. 37.
    Werner, H. Theoretische und Praktische Ergebnisse auf dem Gebeit der Tschebyscheff-Approximationen mit Rationalen Funktionen. Vortrag gehalten in Grenoble (20 Marz 1968 ).Google Scholar

Copyright information

© Springer Basel AG 1976

Authors and Affiliations

  • E. H. KaufmanJr.
    • 1
    • 2
  • G. D. Taylor
    • 1
    • 2
  1. 1.Department of MathematicsCentral Michigan UniversityMount PleasantUSA
  2. 2.Department of MathematicsColorado State UniversityFort CollinsUSA

Personalised recommendations