Skip to main content

Part of the book series: Respiratory Pharmacology and Pharmacotherapy ((RPP))

  • 64 Accesses

Abstract

At the biochemical level, agonist-induced force generation of airways and other smooth muscles can be divided into two components: a rapid increase in force which occurs seconds after the addition of a spasmogen followed by, or maybe partly coincident with, a slower, tonic, well maintained contracture. This chapter reviews how airways smooth muscle (ASM) generates force, the contractile proteins involved and their regulation by second and third messenger molecules. Current hypotheses regarding the biochemical basis of force maintenance in ASM is the subject of chapter 6 of this volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Huxley AF, Niedergerke R. Structural changes in muscle during shortening. Nature 1954; 173: 971–973.

    Article  PubMed  CAS  Google Scholar 

  2. Huxley HE, Hanson J. Changes in the cross striations of muscle during contraction and stretch and their structural interpretation. Nature 1954 173: 973–976.

    Article  PubMed  CAS  Google Scholar 

  3. Periasamy A, Burns DH, Holdren DN, Pollack GH, Trombit, K. A-Band shortening in single fibres of frog skeletal muscle. Biophys J 1990; 57: 815–828.

    Article  PubMed  CAS  Google Scholar 

  4. Pease DC, Molinari S. Electron microscopy of muscular arteries; pial vessels of the cat and monkey. J Ultrastruct Res 1960; 3: 447–468.

    Article  PubMed  CAS  Google Scholar 

  5. Choi JK. The fine ultrastructure of the urinary bladder of the toad, Bufo marinus. J Cell Biol 1963; 16: 53–72.

    Article  PubMed  CAS  Google Scholar 

  6. Takano-Ohmuro H, Obinata T, Mikawa T, Masaki T. Changes in myosin isozymes during development of chicken gizzard muscle. J Biochem (Tokyo) 1983; 93: 903–908.

    Article  CAS  Google Scholar 

  7. Pagani F, Faris R, Shemin R, Julian FJ. Evidence for smooth muscle myosin isozymes. Biophys J 1985; 47: 310a.

    Google Scholar 

  8. Mohammad MA, Sparrow MP. Changes in myosin heavy chain stoichiometry in pig tracheal smooth muscle during development. FEBS Letts 1988; 228: 109–112.

    Article  CAS  Google Scholar 

  9. Rovner AS, Thompson MM, Murphy RA. Two different heavy chains are found in smooth muscle myosin. Am J Physiol 1986; 250: C861–C970.

    Google Scholar 

  10. Kawamoto S, Adelstein RS. Characterization of myosin heavy chains in cultured aorta smooth muscle cells. A comparative study. J Biol Chem 1987; 262: 7282–7288.

    PubMed  CAS  Google Scholar 

  11. Borrioni AC, Zanellato AMC, Scannapieco G, Pauletto P, Sartore S. Myosin heavy chain isoforms in adult and developing rabbit vascular smooth muscle. Eur J Biochem 1989; 183: 413–417.

    Article  Google Scholar 

  12. Mohammad MA, Sparrow MP. The distribution of heavy chain isoforms of myosin in airways smooth muscle from adult and neonate humans. Biochem J 1988; 260: 421–426.

    Google Scholar 

  13. Schildmeyer LA, Seidel CL. Quantitative and qualitative heterogeneity in smooth muscle myosin heavy chains. Life Sci 1989; 45: 1617–1625.

    Article  PubMed  CAS  Google Scholar 

  14. Sparrow MP, Arner A, Mohammad MA, Hellstrand P, Ruegg JC. Isoforms of myosin in smooth muscle. In: Siegman, M. (Ed), Regulation and Contraction of Smooth Muscle, Vol 245, Alan R. Liss Inc, 1987: 67–79.

    Google Scholar 

  15. Helper DJ, Lash JA, Hathaway DR. Distribution of isoelectric variants of the 17, 000-dalton myosin light chains in mammalian smooth muscle. J Biol Chem 1988; 263: 15748–15753.

    PubMed  CAS  Google Scholar 

  16. Fatigati V, Murphy RA. Actin and tropomyosin variants in smooth muscles. Dependence on tissue type. J Biol Chem 1984; 259: 14383–14388.

    PubMed  CAS  Google Scholar 

  17. Cohen DM, Murphy RA. Actin-myosin ratio differences in porcine smooth muscles. Fed Proc 1977; 36: 602.

    Google Scholar 

  18. Cummins P, Perry SV. Chemical and immunochemical characteristics of tropomyosins from striated and smooth muscles. Biochem J 1973; 141: 43–49.

    Google Scholar 

  19. Marston SB, Smith CWJ. The thin filaments of smooth muscles. J Muscle Res Cell Motility 1985; 6: 669–708.

    Article  CAS  Google Scholar 

  20. Merkel L, Meisheri KD, Pfizer G. The variable relation between myosin light chain phosphorylation and actin-activated ATPase activity in chicken gizzard smooth muscle. Modulation by tropomyosin. FEBS Letts 1984; 138: 429–434.

    CAS  Google Scholar 

  21. Nag S, Seidel JC. Dependence on Ca2+ and tropomyosin of the actin-activated ATPase activity of phosphorylated gizzard myosin in the presence of low concentrations of Mg2+. J Biol Chem 1983; 258: 6444–6449.

    PubMed  CAS  Google Scholar 

  22. Ebashi S. Regulation of muscle contraction. Proc R Soc Lond Ser B 1980; 207: 259–286.

    Article  CAS  Google Scholar 

  23. Bremel RD. Myosin-linked calcium regulation in vertebrate smooth muscle. Nature 1974; 252: 405–407.

    Article  PubMed  CAS  Google Scholar 

  24. Seow CY, Stephens NL. Time-dependence of series elasticity in tracheal smooth muscle. J Appl Physiol 1987; 62: 1556–1561.

    PubMed  CAS  Google Scholar 

  25. Chatterjee M, Murphy RA. Calcium-dependent stress maintenance without myosin phosphorylation in skinned smooth muscle. Science 1983; 221: 464–466.

    Article  PubMed  CAS  Google Scholar 

  26. Small JV, Sobieszek A. Ca regulation of smooth muscle actomyosin via a kinase-phosphatase-dependent phosphorylation and dephosphorylation of the 20,000-Mr light chain of myosin. Eur J Biochem 1977; 76: 521–530.

    Article  PubMed  CAS  Google Scholar 

  27. Sobieszek A, Small JV. Regulation of actin-myosin interaction in vertebrate smooth muscle: activation via a myosin-light-chain-kinase and the effect of tropomyosin. J Mol Biol 1977; 112: 559–576.

    Article  PubMed  CAS  Google Scholar 

  28. Aksoy MO, Williams D, Sharkey EM, Hartshorne DJ. A relationship between Ca2+ sensitivity and phosphorylation of gizzard actomyosin. Biochem Biophys Res Comm 1976; 69: 35–41.

    Article  PubMed  CAS  Google Scholar 

  29. Kamm KE, Leachman SA, Michnoff CH, Nunnally MH, Persechini A, Richardson AL, Stull JT. Myosin light chain kinases and kinetics of myosin phosphorylation in smooth muscle cells. In: Siegman M. Ed, Regulation and Contraction of Smooth Muscle, Vol 245, Alan R. Liss Inc, 1987: 183–193.

    Google Scholar 

  30. Felbel J, Trockur B, Ecker T, Landgraf W, Hofmann F. Regulation of cytosolic calcium by cAMP and cGMP in freshly isolated smooth muscle cells from bovine trachea. J Biol Chem 1988; 263: 16764–16771.

    PubMed  CAS  Google Scholar 

  31. Fujiwara T, Sumimoto K, Itoh T, Suzuki H, Kuriyama H. Relaxing actions of procaterol, a β 2-adrenoceptor stimulant, on smooth muscle cells of the dog trachea. Br J Pharmacol 1988; 93: 199–209.

    Article  PubMed  CAS  Google Scholar 

  32. Kotlikoff MI, Murray RK, Reynolds EE. Histamine-induced calcium release and phorbol antagonism in cultured airway smooth muscle cells. Am J Physiol 1987; 253: C561–566.

    Google Scholar 

  33. Takuwa T, Takuwa N, Rasmussen H. The effect of isoproterenol on intracellular calcium concentration. J Biol Chem 1988; 263; 762–768.

    PubMed  CAS  Google Scholar 

  34. Taylor DA, Stull JT. Calcium dependence of myosin light chain phosphorylation in smooth muscle cells. J Biol Chem 1988; 263: 14456–14462.

    PubMed  CAS  Google Scholar 

  35. Taylor DA, Bowman BF, Stull JT. Cytoplasmic Ca2+ is a primary determinant for myosin phosphorylation in smooth muscle cells. J Biol Chem 1989; 264: 6207–6213.

    PubMed  CAS  Google Scholar 

  36. Adelstein RS, Eisenberg E. Regulation and kinetics of the actin-myosin-ATP interaction. Ann Rev Biochem 1980; 49: 921–956.

    Article  PubMed  CAS  Google Scholar 

  37. Rasmussen H, Barratt PQ. Calcium messenger system: An integrated view. Physiol Rev 1984; 64: 938–984.

    PubMed  CAS  Google Scholar 

  38. Manalan AS, Klee CB. Calmodulin. Adv Cyclic Nucl Protein Phosphorylation Res 1984; 18: 227–278.

    CAS  Google Scholar 

  39. Stull JT, Nunnally MH, Michnoff CH. Calmodulin-dependent protein kinases. In: Krebs, E.G. and Boyer, P.D Eds. The Enzymes. Academic Press, 1986: 113–166.

    Google Scholar 

  40. Persechini A, Kamm KE, Stull JT. Different phosphorylated forms of myosin in contracting tracheal smooth muscle. J Biol Chem 1986; 261: 6293–6299.

    PubMed  CAS  Google Scholar 

  41. Kamm KE, Stull JT. Contractile mechanisms. Am Rev Resp Dis 1987; 136; S12–S14.

    Article  Google Scholar 

  42. Colburn JC, Michnoff CH, Hsu L-C, Slaughter CA, Kamm KE, Stull JT. Sites phosphorylated in myosin light chain in contracting smooth muscle. J Biol Chem 1988; 263: 19166–19173.

    PubMed  CAS  Google Scholar 

  43. de Lanerolle P, Condit JR, Tanenbaum M, Adelstein RS. Myosin phosphorylation, agonist concentration and contraction of tracheal smooth muscle. Nature 1982; 298: 871–872.

    Article  PubMed  Google Scholar 

  44. Silver PJ, Stull JT. Phosphorylation of myosin light chain and phosphorylase in tracheal smooth muscle is response to KC1 and carbachol. Mol Pharmacol 1984; 25: 267–274.

    PubMed  CAS  Google Scholar 

  45. de Lanerolle P, Stull JT. Myosin phosphorylation during contraction and relaxation of tracheal smooth muscle. J Biol Chem 1980; 255: 9993–10000.

    PubMed  Google Scholar 

  46. Ikebe M, Hartshorne DJ. Effects of Ca2+ on the conformation and enzymatic activity of smooth muscle myosin. J Biol Chem 1985; 260: 10027–10031.

    PubMed  CAS  Google Scholar 

  47. Tanaka T, Sobue K, Owada MK, Hakura A. Linear relationship between diphosphorylation of 20 kDa light chain of gizzard myosin and the actin-activated myosin ATPase activity. Biochem Biophys Res Comm 1985; 131: 987–993.

    Article  PubMed  CAS  Google Scholar 

  48. Silver PJ, Stull JT. Regulation of mysoin light chain and phosphorylase phosphorylation in tracheal smooth muscle. J Biol Chem 1982; 257: 6145–6150.

    PubMed  CAS  Google Scholar 

  49. Gerthoffer WT, Murphy RA. Myosin phosphorylation and regulation of cross-bridge cycle in tracheal smooth muscle. Am J Physiol 1983; 244: C182–C187.

    Google Scholar 

  50. Kamm KE, Stull JT. Myosin phosphorylation, force and maximal shortening velocity in neurally stimulated tracheal smooth muscle. Am J Physiol 1985; 249: C238–C247.

    Google Scholar 

  51. Stephens NL. Physical properties of contractile systems. In: Daniel EE, Paton, DM, Eds Methods in Pharmacology. Plenum Press; 1975: 265–296.

    Google Scholar 

  52. Kamm KE, Stull JT. Activation of smooth muscle contraction: Relation between myosin phosphorylation and stiffness. Science 1986; 232: 80–82.

    Article  PubMed  CAS  Google Scholar 

  53. Miller-Hance WC, Miller JR, Wells JN, Stull JT, Kamm KE. Biochemical events associated with activation of smooth muscle contraction. J Biol Chem 1988; 263: 13979–13982.

    PubMed  CAS  Google Scholar 

  54. Kamm KE. Myosin light chain phosphorylation during phasic contractions of tracheal smooth muscle. Pflugers Arch 1987; 408: 474–478.

    Article  PubMed  CAS  Google Scholar 

  55. Giembycz MA, Rodger IW. Electrophysiological and other aspects of excitation-contraction coupling and uncoupling in mammalian airway smooth muscle. Life Sci 1987; 41: 111–132.

    Article  PubMed  CAS  Google Scholar 

  56. Itoh T, Ikebe M, Kargacin GJ, Hartshorne DJ, Kemp BE, Fay FS. Effects of modulators of myosin light chain kinase activity in single smooth muscle cells. Nature 1989; 338: 164–167.

    Article  PubMed  CAS  Google Scholar 

  57. Tansey MG, Word RA, Hidaka H, Singer HA, Schworer CM, Kamm KE, Stull JT. Phosphorylation of myosin light chain kinase by the multifunctional calmodulin-dependent protein kinase II in smooth muscle cells. J Biol Chem 1992; 267: 12511–12516.

    PubMed  CAS  Google Scholar 

  58. Gilman AG. G-Proteins: transducers of receptor-generated signals. Ann Rev Physiol 1987; 56: 615–649.

    CAS  Google Scholar 

  59. Kitazawa T, Kobayashi S, Horiuti K, Somlyo AV, Somlyo AP. Receptor-coupled, permeabilized smooth muscle. Role of the phosphatidylinositol cascade, G-proteins, and modulation of the contractile response to Ca2+. J Biol Chem 1989; 264: 5339–5342.

    PubMed  CAS  Google Scholar 

  60. Fujiwara T, Itoh T, Kubota Y, Kuriyama H. Effect of guanosine nucleotides on skinned smooth muscle tissue of the rabbit mesenteric artery. J Physiol 1989; 408: 535–547.

    PubMed  CAS  Google Scholar 

  61. Kubota Y, Nomura M, Kamm KE, Murphy MC, Stull JT. GTPγ S-dependent regulation of smooth muscle contractile elements. Am J Physiol 1992; 262: C405—C410.

    Google Scholar 

  62. Chacko S, Conti MA, Adelstein R.S. The effect of phosphorylation of smooth muscle myosin on actin activation and Ca2+ regulation. Proc Natl Acad Sci USA 1977; 74: 129–133.

    Article  PubMed  CAS  Google Scholar 

  63. Rees DD, Fredericksen DW. Calcium regulation of porcine aortic myosin. J Biol Chem 1981; 256: 357–364.

    PubMed  CAS  Google Scholar 

  64. Chacko S, Rosenfeld A. Regulation of actin-activated ATP hydrolysis by arterial myosin. Proc Natl Acad Sci USA 1982; 79: 292–296.

    Article  PubMed  CAS  Google Scholar 

  65. Nag S, Seidel JC. Dependence on Ca2+ and tropomyosin of the actin-activated ATPase activity of phosphorylated gizzard myosin in the presence of low Mg2+. J Biol Chem 1983; 258: 6444–6449.

    PubMed  CAS  Google Scholar 

  66. Kaminski EA, Chacko S. Effects of Ca2+ and Mg2+ on the actin-activated ATP hydrolysis by phosphorylated heavy meromyosin from arterial smooth muscle. J Biol Chem 1984; 259: 9104–9108.

    PubMed  CAS  Google Scholar 

  67. Ebashi S, Mikawa T, Hirata M, Toyooka T, Nonomura Y. Regulatory proteins of smooth muscle. In: Casteels R, Godfraind T, Ruegg JC. Eds, Excitation-Contraction Coupling in Smooth Muscles, Elsevier, 1977: 325–334.

    Google Scholar 

  68. Ebashi S, Nonomura Y, Hirata M. Mode of calcium binding to smooth muscle contractile systems. In: Kakiuchi S, Hidaka H, Means A.R Eds, Calmodulin and Intracellular Calcium receptors, Plenum Press, 1982; 49–54.

    Google Scholar 

  69. Hirata M, Mikawa T, Nonomura V, Ebashi S. Ca2+-regulation-regulation in vascular smooth muscle. II. Ca2+ binding of aorta leiotonin. J Biochem (Tokyo) 1980; 78: 369–378.

    Google Scholar 

  70. Ebashi S, Nonomura Y, Nakamura S, Nakasone H, Kohama K. Regulatory mechanism in smooth muscle: actin-linked regulation. Fed Proc 1982; 41: 2863–2867.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Basel AG

About this chapter

Cite this chapter

Giembycz, M.A. (1994). Current Concepts on Mechanisms of Force Generation in Airways Smooth Muscle. In: Raeburn, D., Giembycz, M.A. (eds) Airways Smooth Muscle: Biochemical Control of Contraction and Relaxation. Respiratory Pharmacology and Pharmacotherapy. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7681-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7681-0_3

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-7683-4

  • Online ISBN: 978-3-0348-7681-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics