Skip to main content

Part of the book series: Respiratory Pharmacology and Pharmacotherapy ((RPP))

Abstract

Actin is a major component of both contractile and cytoskeletal structures in all eukaryotic cells [1–4]. It can exist either as a monomeric molecule (G-actin) or as a filamentous polymer (F-actin). Both forms can be reversibly transformed one into another depending on ionic conditions, temperature and the presence of other proteins. The only functional form of actin is F-actin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Korn ED. Actin polymerization and its regulation by proteins from nonmuscle cells. Physiol Rev 1982; 62: 672–737.

    PubMed  CAS  Google Scholar 

  2. Pollard TD, Cooper JA. Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Ann Rev Biochem 1986; 55: 987–1036.

    Article  PubMed  CAS  Google Scholar 

  3. Kabsch W, Vandekerckhove J. Structure and function of actin. Ann Rev Biophys Biomol Struct 1992; 21: 49–76.

    Article  CAS  Google Scholar 

  4. Meagher RB, McLean BG. Diversity of plant actins. Cell Motil Cytoskel 1990; 16: 164–6.

    Article  CAS  Google Scholar 

  5. Elzinga M, Collins JH, Kuehl WM, Adelstein RS. Complete amino acid sequence of actin of rabbit skeletal muscle. Proc Natl Acad Sci 1973; 70: 2687–91.

    Article  PubMed  CAS  Google Scholar 

  6. Vandekerckhove J, Weber K. Chordate muscle actins differ distinctly from invertebrate muscle actins. J Mol Biol 1984; 179: 391–413.

    Article  PubMed  CAS  Google Scholar 

  7. Estes JE, Selden LA, Kinosian HJ, Gershman LC. Tightly-bound divalent cation of actin. J Muscle Res Cell Motil 1992; 13: 272–84.

    Article  PubMed  CAS  Google Scholar 

  8. Carlier MF, Pantaloni D, Korn ED. Fluorescence measurements of the binding of cations to high-affinity sites on ATP-G-actin. J Biol Chem 1986; 261: 10778–84.

    PubMed  CAS  Google Scholar 

  9. Selden LA, Estes JE, Gershman LC. High affinity divalent cation binding to actin. Effect of low affinity salt binding. J Biol Chem 1989; 264: 9271–7.

    PubMed  CAS  Google Scholar 

  10. Ng R, Abelson J. Isolation and sequence of the gene for actin in Saccharomyces cerevisiae. Proc Natl Acad Sci 1980; 77: 3912–6.

    Article  PubMed  CAS  Google Scholar 

  11. Vandekerckhove J, Weber K. At least six different actins are expressed in a higher mammal: an analysis based on the amino acid sequence of the amino terminal tryptic peptide. J Mol Biol 1978; 126: 783–802.

    Article  PubMed  CAS  Google Scholar 

  12. Garrels JI, Gibson W. Identification and characterization of multiple forms of actin. Cell 1976; 9: 793–805.

    Article  PubMed  CAS  Google Scholar 

  13. Fatigati V, Murphy RA. Actin and tropomyosin variants in smooth muscles: dependence on tissue type. J Biol Chem 1984; 259: 14383–8.

    PubMed  CAS  Google Scholar 

  14. Owens GK, Loeb A, Gordon D, Thompson MM. Expression of smooth muscle specific alpha-isoactin in cultured vascular smooth muscle cells: relationship between growth and cytodifferentiation. J Cell Biol 1986; 102: 343–52.

    Article  PubMed  CAS  Google Scholar 

  15. Owens GK, Thompson MM. Developmental changes in isoactin expression in rat aortic smooth muscle cells in vivo. J Biol Chem 1986; 261: 13373–80.

    PubMed  CAS  Google Scholar 

  16. McHugh KM, Lessard JL. The developmental expression of the rat α-vascular and γ-enteric smooth muscle isoactins: isolation and characterization of a rat γ-enteric actin cDNA. Mol Cell Biol 1988; 8: 5224–31.

    PubMed  CAS  Google Scholar 

  17. Cavaille F, Janmot C, Ropert S, d’Albis A. Isoforms of myosin and actin in human, monkey and rat myometrium. Comparison of pregnant and non-pregnant uterus proteins. Eur J Biochem 1986; 160: 507–13.

    Article  PubMed  CAS  Google Scholar 

  18. Clowes AW, Clowes M, Kocher O, Ropraz P, Chaponnier C, Gabbiani G. Arterial smooth muscle cells in vivo: relationship between actin isoform expression and mitogenesis and their modulation by heparin. J Cell Biol 1988; 107: 1939–45.

    Article  PubMed  CAS  Google Scholar 

  19. Malmqvist U, Arner A. Isoform distribution and tissue contents of contractile and cytoskeletal proteins in hypertrophied smooth muscle from rat portal vein. Circ Res 1990; 66: 832–45.

    Article  PubMed  CAS  Google Scholar 

  20. Turla MB, Thompson MM, Corjay MH, Owens GK. Mechanisms of angiotensin II and arginine-vasopressin-induced increases in protein synthesis and content in cultured rat aortic smooth muscle cells. Circ Res 1991; 68: 288–99.

    Article  PubMed  CAS  Google Scholar 

  21. Corjay MH, Blank RS, Owens GK. Platelet-derived growth factor-induced destabilization of smooth muscle alpha-actin mRNA. J Cell Physiol 1990; 145: 391–7.

    Article  PubMed  CAS  Google Scholar 

  22. Czernobilsky B, Shezen E, Lifschitz-Mercer B, Fogel M, Luzon A, Jacob N, et al. Alpha smooth muscle actin (α-SM actin) in normal human ovaries, in ovarial stromal hyperplasia and in ovarian neoplasms. Virchows Arch [B] 1989; 57: 55–61.

    Article  CAS  Google Scholar 

  23. Herman IM, D’Amore PD. Microvascular pericytes contain muscle and nonmuscle actins. J Cell Biol 1985; 101: 45–52.

    Article  Google Scholar 

  24. DeNofrio D, Hoock TC, Herman IM. Functional sorting of actin isoforms in minivascular pericytes. J Cell Biol 1989; 109: 191–202.

    Article  PubMed  CAS  Google Scholar 

  25. Herman IM. Actin isoforms. Curr Opin Cell Biol 1993; 5: 48–53.

    Article  PubMed  CAS  Google Scholar 

  26. Rubenstein PA. The functional importance of multiple actin isoforms. Bioessays 1990; 12: 309–14.

    Article  PubMed  CAS  Google Scholar 

  27. Wertman KF, Drubin DG. Actin constitution: guaranteeing the right to assemble. Science 1992; 258: 759–60.

    Article  PubMed  CAS  Google Scholar 

  28. Gordon DJ, Boyer JL, Korn ED. Comparative biochemistry of non-muscle actins. J Biol Chem 1977; 252: 8300–9.

    PubMed  CAS  Google Scholar 

  29. Mossakowska M, Strzelecka-Golaszewska H. Identification of amino acid substitutions differentiating actin isoforms in their interaction with myosin. Eur J Biochem 1985; 153: 373–81.

    Article  PubMed  CAS  Google Scholar 

  30. Kron SJ, Dubin DG, Botstein D, Spudich JA. Yeast actin filaments display ATP-dependent sliding movement over surfaces coated with rabbit muscle myosin. Proc Natl Acad Sci 1992; 89: 4466–70.

    Article  PubMed  CAS  Google Scholar 

  31. Harris DE, Warshaw DM. Smooth and skeletal muscle actin are mechanically indistinguishable in the in vitro motility assay. Circ Res 1993; 72: 219–224.

    Article  PubMed  CAS  Google Scholar 

  32. Larsson H, Lindberg U. The effect of divalent cations on the interaction between calf spleen profilin and different actins. Biochim Biophys. Acta 1988; 953: 95–105.

    CAS  Google Scholar 

  33. Oshima S, Abe H, Obinata T. Isolation of profilin from embryonic chicken skeletal muscle and evaluation of its interaction with different actin isoforms. J Biochem 1989; 105: 855–7.

    Google Scholar 

  34. Winder SJ, Sutherland C, Walsh MP. Smooth muscle calponin: inhibition of skeletal actomyosin ATPase and effect of caldesmon. In: Moreland RS, editor. Regulation of smooth muscle contraction. New York: Plenum Publishing Corp. 1991: 37–52.

    Chapter  Google Scholar 

  35. Weber A, Nachmias VT, Pennise CR, Pring M, Safer D. Interaction of thymosin β 4 with muscle and platelet actin: implications for actin sequestration in resting platelets. Biochemistry 1992; 31: 6179–85.

    Article  PubMed  CAS  Google Scholar 

  36. Hirono M, Endoh H, Okada N, Numata O, Watanabe Y. Tetrahymena actin. Cloning and sequencing of the Tetrahymena actin gene and identification of its gene product. J Mol Biol 1987; 194: 181–92.

    Article  PubMed  CAS  Google Scholar 

  37. Hirono M, Tanaka R, Watanabe Y. Tetrahymena actin: copolymerization with skeletal muscle actin and interactions with muscle actin-binding proteins. J Biochem 1990; 107: 32–6.

    PubMed  CAS  Google Scholar 

  38. Carlsson L, Nystrom L-E, Lindberg U, Kannan KK, Cid-Dresdner M, Lovgren S, et al. Crystallization of a non-muscle actin. J Mol Biol 1976; 105: 353–66.

    Article  PubMed  CAS  Google Scholar 

  39. Mannherz HG, Kabsch W, Leberman R. Crystals of skeletal muscle actin :pancreatic DNAse I complex. FEBS Lett 1977; 73: 141–3.

    Article  PubMed  CAS  Google Scholar 

  40. Schutt CE, Lindberg U, Myslik J, Stauss N. Molecular packing in profilin : actin and its implication. J Mol Biol 1989; 209: 735–46.

    Article  PubMed  CAS  Google Scholar 

  41. Kabsch W, Mannherz HG, Suck D, Pal EF, Holmes K. Atomic structure of the actin: DNase I complex. Nature 1990; 347: 37–44.

    CAS  Google Scholar 

  42. Mannherz HG. Crystallization of actin in complex with actin-binding proteins. J Biol Chem 1992; 267: 11661–4.

    PubMed  CAS  Google Scholar 

  43. Mannherz HG, Gooch J, Way M, Weeds AG, McLaughlin PJ. Crystallization of the complex of actin with gelsolin segment 1. J Mol Biol 1992; 226: 899–901.

    Article  PubMed  CAS  Google Scholar 

  44. Frieden C. Actin and tubulin polymerization: the use of kinetic methods to determine mechanism. Ann Rev Biophys Chem 1985; 14: 189–210.

    Article  CAS  Google Scholar 

  45. Liu DF, Wang D, Stracher A. The accessibility of the thiol groups on G- and F-actin of rabbit muscle. Biochem J 1990; 266: 453–9.

    PubMed  CAS  Google Scholar 

  46. Shu WP, Wang D, Stracher A. Chemical evidence for the existence of activated G-actin. Biochem J 1992; 283: 567–73.

    PubMed  CAS  Google Scholar 

  47. Lal AA, Korn ED, Brenner SL. Rate constants for actin polymerization in ATP determined using cross-linked actin trimers as nuclei. J Biol Chem 1984; 259: 8794–8800.

    PubMed  CAS  Google Scholar 

  48. Gaertner A, Ruhnau K, Schroer E, Selve N, Wanger M, Wegner A. Probing nucleation cutting and capping of actin filaments. J Muscle Res Cell Motil 1989; 10: 1–9.

    Article  PubMed  CAS  Google Scholar 

  49. Carlier M-F. Actin polymerization and ATP hydrolysis. Adv Biophys 1990; 26: 51–73.

    Article  PubMed  CAS  Google Scholar 

  50. Carlier M-F. Actin: protein structure and filament dynamics. J Biol Chem 1991; 266: 1–4.

    PubMed  CAS  Google Scholar 

  51. Cooke R. The role of the bound nucleotide in the polymerization of actin. Biochemistry 1975; 14: 3250–6.

    Article  PubMed  CAS  Google Scholar 

  52. Wegner A. Head to tail polymerization of actin. J Mol Biol 1976; 108: 139–150.

    Article  PubMed  CAS  Google Scholar 

  53. Murphy DB, Gray RO, Grasser WA, Pollard TD. Direct demonstration of actin filament annealing in vitro. J Cell Biol 1988; 106: 1947–54.

    Article  PubMed  CAS  Google Scholar 

  54. Carlier MF, Pantaloni D, Korn ED. The mechanisms of ATP hydrolysis accompanying the polymerization of Mg-actin and Ca-actin. J Biol Chem 1987; 262: 3052–9.

    PubMed  CAS  Google Scholar 

  55. Amos LA. The structure of muscle filaments studied by electron microscopy. Ann Rev Biophys Chem 1985; 14: 291–313.

    Article  CAS  Google Scholar 

  56. Egelman EH. The structure of F-actin. J Muscle Res Cell Motil 1985; 6: 129–151.

    Article  PubMed  CAS  Google Scholar 

  57. Holmes KC, Popp D, Gebhard W, Kabsch W. Atomic model of the actin filament. Nature 1990; 347: 44–9.

    Article  PubMed  CAS  Google Scholar 

  58. Vandekerckhove J, Schering B, Barmann M, Aktories K. Clostridium perfringens iota toxin ADP-ribosylates skeletal muscle actin in Arg-177. FEBS Lett 1987; 225: 48–52.

    Article  PubMed  CAS  Google Scholar 

  59. Aktories K, Wegner A. ADP-ribosylation of actin by clostridial toxins. J Cell Biol 1989; 109: 1385–7.

    Article  PubMed  CAS  Google Scholar 

  60. Vandekerckhove J, Kaiser DA, Pollard TD. Acanthamoeba actin and profilin can be cross-linked between glutamic acid 365 of actin and lysine 115 of profilin. J Cell Biol 1989; 109: 619–26.

    Article  PubMed  CAS  Google Scholar 

  61. Elzinga M, Phelan JJ. F-actin is intermolecularly crosslinked by N-N’-p-phenylene dimaleimide through lysine-191 and cysteine-374. Proc Natl Acad Sci 1984; 81: 6599–6602.

    Article  PubMed  CAS  Google Scholar 

  62. Hegyi G, Michel H, Shabanowitz J, Hunt DF, Chatterjie N, Healy-Louie G, et al. Gln-41 is intermolecularly cross-linked to Lys-113 in F-actin by N-(4-azidobenzoyl)-putrescine. Protein Sci 1992; 1: 132–144.

    Article  PubMed  CAS  Google Scholar 

  63. Miki M, O’Donoghue SI, Dos Remedios CG. Structure of actin observed by fluorescence resonance energy transfer spectroscopy. J Muscle Res Cell Motil 1992; 13: 132–45.

    Article  PubMed  CAS  Google Scholar 

  64. Moore PB, Huxley HE, DeRosier DJ. Three-dimensional reconstruction of F-actin, thin filaments and decorated thin filaments. J Mol Biol 1970; 50: 279–95.

    Article  PubMed  CAS  Google Scholar 

  65. Aebi U, Millonig R, Salvo H, Engel A. The three-dimensional structure of the actin filament revisited. Ann N Y Acad Sci 1986; 483: 100–119.

    Article  PubMed  CAS  Google Scholar 

  66. Hegyi G, Premecz G, Sain B, Muhlrad A. Selective carbethoxylation of the histidine residues of actin by diethylpyrocarbonate. Eur J Biochem 1974; 44: 7–12.

    Article  PubMed  CAS  Google Scholar 

  67. Burtnick LD. Modification of actin with fluorescein isothiocyanate. Biochim Biophys Acta 1984; 791: 57–62.

    Article  PubMed  CAS  Google Scholar 

  68. Bender L, Fasold H, Kenmoku A, Middelhoff G, Volk KE. The selective blocking of the polymerization reaction of striated muscle actin leading to a derivative suitable for crystallization. Eur J Biochem 1976; 64: 215–8.

    Article  PubMed  CAS  Google Scholar 

  69. Lu RC, Szilagyi L. Change of reactivity of lysine residues upon actin polymerization. Biochemistry 1981; 20: 5914–9..

    Article  PubMed  CAS  Google Scholar 

  70. Hitchcock-DeGregori SE, Mandala S, Sachs GA. Changes in actin lysine reactivities during polymerization detected using a competitive labelling method. J Biol Chem 1982; 257: 12573–80.

    CAS  Google Scholar 

  71. Egelman EH, Francis N, DeRosier DJ. F-actin is a helix with a random variable twist. Nature 1982; 298: 131–5.

    Article  PubMed  CAS  Google Scholar 

  72. Stokes DL, DeRosier DJ. The variable twist of actin and its modulation by actin-binding proteins. J Cell Biol 1987; 104: 1005–17.

    Article  PubMed  CAS  Google Scholar 

  73. Próchniewicz E, Yanagida T. Comparison of intermonomer interactions within polymers of chicken gizzard and rabbit skeletal muscle actins. J Biochem 1981; 89: 1215–21.

    PubMed  Google Scholar 

  74. Bremer A, Millonig RC, Sutterlin R, Engel A, Pollard TD, Aebi U. The structural basis for the intrinsic disorder of the actin filament: the “lateral slipping” model. J Cell Biol 1991; 115: 689–703.

    Article  PubMed  CAS  Google Scholar 

  75. Orlova A, Egelman EH. Structural basis for the destabilization of F-actin by phosphate release following ATP hydrolysis. J Mol Biol 1992; 227: 1043–53.

    Article  PubMed  CAS  Google Scholar 

  76. Wanger M, Wegner A. Binding of phosphate ions to actin. Biochim Biophys Acta 1987; 914: 105–13.

    Article  PubMed  CAS  Google Scholar 

  77. Danker P, Fischer S. Stabilization of actin filaments by ATP and inorganic phosphate. Z Naturforsch 1989; 44c: 698–704.

    Google Scholar 

  78. Nowak E, Borovikov YS, Khoroshev MI, Dḁbrowska R. Troponin I and caldesmon restrict alterations in actin structure occurring on binding of myosin subfragment 1. FEBS Lett 1991; 281: 51–4.

    Article  PubMed  CAS  Google Scholar 

  79. Oosawa F. Macromolecular assembly of actin. In: Stracher A, editor. Muscle and nonmuscle motility. New York: Academic Press 1983; 151: 216.

    Google Scholar 

  80. Yanagida T, Nakase M, Nishiyama K, Oosawa F. Direct observation of motion of single F-actin filaments in the presence of myosin. Nature 1984; 307: 58–60.

    Article  PubMed  CAS  Google Scholar 

  81. Oplatka A. The molecular basis of chemomechanical coupling in muscle and in other biological engines. Biophys Chem 1991; 41: 237–241.

    Article  PubMed  CAS  Google Scholar 

  82. Schutt CE, Lindberg U. Actin as the generator of tension during muscle contraction. Proc Natl Acad Sci 1992; 89: 319–23.

    Article  PubMed  CAS  Google Scholar 

  83. Morel JE, Mereh Z. Muscle contraction and in vitro movement: role of actin? J Muscle Res Cell Motil 1992; 13: 5–6.

    Article  PubMed  CAS  Google Scholar 

  84. Janmey PA; Hvidt S, Oster GF, Lamb J, Stossel TP, Hartwig JH. Effect of ATP on actin filament stiffness. Nature 1990; 347: 95–9.

    Article  PubMed  CAS  Google Scholar 

  85. Pollard TD, Goldberg H, Schwarz WH. Nucleotide exchange, structure and mechanical properties of filaments assembled from ATP-actin and ADP-actin. J Biol Chem 1992; 267: 20339–45.

    PubMed  CAS  Google Scholar 

  86. Mornet D, Bonet A, Audemard E, Bonicel J. Functional sequences of the myosin head. J Muscle Res Cell Motil 1989; 10: 10–24.

    Article  PubMed  CAS  Google Scholar 

  87. Warrick HM, Spudich JA. Myosin structure and function in cell motility. Ann Rev Biol 1987; 3: 379–421.

    Article  CAS  Google Scholar 

  88. Milligan RA, Whittaker M, Safer D. Molecular structure of F-actin and location of surface binding sites. Nature 1990; 348: 217–21.

    Article  PubMed  CAS  Google Scholar 

  89. Mornet DR, Bertrand R, Pantel P, Audemard E, Kassab R. Structure of the actinmyosin interface. Nature 1981; 292: 301–6.

    Article  PubMed  CAS  Google Scholar 

  90. Sutoh K. Identification of myosin-binding sites on the actin sequence. Biochemistry. 1982; 3654–61.

    Google Scholar 

  91. Bertrand R, Chaussepied P, Kassab R, Boyer M, Roustan C, Benyamin Y. Crosslinking of the skeletal myosin subfragment-1 haavy chain to the N-terminal actin segment of residues 40–113. Biochemistry 1988; 27: 4729–36.

    Article  Google Scholar 

  92. Moir AJG, Levine BA, Goodearl AJ, Trayer IP. The interaction of actin with myosin subfragment 1 and with pPDM-cross-linked S1: a 1HNMR investigation. J Muscle Res Cell Motil 1987; 8: 68–9.

    Google Scholar 

  93. Levine BA, Moir AJG, Perry SV. The interaction of troponin-I with the N-terminal region of actin. Eur J Biochem 1988; 172: 389–97.

    Article  PubMed  CAS  Google Scholar 

  94. Méjean C, Boyer M, Labbé JP, Marlier L, Benyamin Y, Roustan C. Anti-actin antibodies. An immunological approach to the myosin-actin and the tropomyosin-actin interfaces. Biochem J 1987; 244: 571–7.

    PubMed  Google Scholar 

  95. Das Gupta G, Reisler E. Antibody against the amino terminus of alpha-actin inhibits actomyosin interactions in the presence of ATP. J Mol Biol 1989; 207: 833–6.

    Article  Google Scholar 

  96. Labbé JP, Méjean C, Benyamin Y, Roustan C. Characterization of an actin-myosin head interface in the 40–113 region of actin using specific antibodies as probes. Biochem J 1990; 271: 407–13.

    PubMed  Google Scholar 

  97. Labbé JP, Boyer M, Roustan C, Benyamin Y. Localization of a myosin subfragment-1 interaction site on the C-terminal part of actin. Biochem J 1992; 284: 75–9.

    PubMed  Google Scholar 

  98. Trayer IP, Trayer HP, Levine BA. Evidence that the N-terminal region of Al-light chain of myosin interacts directly with the C-terminal region of actin. Eur J Biochem 1987; 184: 259–66.

    Article  Google Scholar 

  99. Leavis PC, Gergely J. Thin filament proteins and thin filament-linked regulation of vertebrate muscle contraction. Crit Rev Biochem Mol Biol 1984; 16: 235–305.

    Article  CAS  Google Scholar 

  100. Marston SB, Smith CWJ. The thin filaments of smooth muscles. J Muscle Res Cell Motil 1985; 6: 669–708.

    Article  PubMed  CAS  Google Scholar 

  101. Lehman W. Calponin and composition of smooth muscle thin filaments. J Muscle Res Cell Motil 1991; 12: 221–4.

    Article  PubMed  CAS  Google Scholar 

  102. Yamashiro-Matsumura S, Matsumura F. Characterization of 83-kilodalton nonmuscle caldesmon from cultured rat cells: stimulation of actin binding of nonmuscle tropomyosin and periodic localization along microfilaments like tropomyosin. J Cell Biol 1988; 106: 1973–83.

    Article  PubMed  CAS  Google Scholar 

  103. Takeuchi K, Takahashi K, Abe M, Nishida W, Hiwada K, Nabeya T, et al. Co-localization of immunoreactive forms of calponin with actin cytoskeleton in platelets, fibroblasts and vascular smooth muscle. J Biochem 1991; 109: 311–6.

    PubMed  CAS  Google Scholar 

  104. Smillie LB. Structure and functions of tropomyosins from muscle and non-muscle sources. Trends Biochem Sci 1979; 4: 151–5.

    Article  CAS  Google Scholar 

  105. Côté GP. Structural and functional properties of the non-muscle tropomyosins. Mol Cell Biochem 1983; 57: 127–46.

    Article  PubMed  Google Scholar 

  106. Lees-Miller JP, Helfman DM. The molecular basis for tropomyosin isoform diversity. Bioessays 1991; 13: 429–37.

    Article  PubMed  CAS  Google Scholar 

  107. Giometti CS, Anderson NL. Tropomyosin heterogeneity in human cells. J Biol Chem 1984; 259: 14113–20.

    PubMed  CAS  Google Scholar 

  108. Mak AS, Smillie LB, Stewart G. A comparison of the amino acid sequences of rabbit skeletal muscle α and β tropomyosins. J Biol Chem 1980; 255: 3647–55.

    PubMed  CAS  Google Scholar 

  109. Lewis WG, Côté GP, Mak AS, Smillie LB. Amino acid sequence of equine platelet tropomyosin. Correlation with interaction properties. FEBS Lett 1983; 156: 269–73.

    Article  PubMed  CAS  Google Scholar 

  110. Helfman DM, Feramisco JR, Ricci WM, Hodges SH. Isolation and sequence of cDNA clone that contains the entire coding region for chicken smooth-muscle α-tropomyosin. J Biol Chem 1984; 259: 14136–243.

    PubMed  CAS  Google Scholar 

  111. Lau SYM, Sanders C, Smillie LB. Amino acid sequence of chicken gizzard γ tropomyosin. J Biol Chem 1985; 260: 7257–63.

    PubMed  CAS  Google Scholar 

  112. Sanders G, Smillie LB. Amino acid sequence of chicken gizzard β-tropomyosin comparison of the chicken gizzard, rabbit skeletal and equine platelet tropomyosin. J Biol Chem 1985; 260: 7264–75.

    PubMed  CAS  Google Scholar 

  113. Yamawaki-Kataoka Y, Helfman DM. Rat embryonic fibroblast tropomyosin 1. J Biol Chem 1985; 267: 14440–5.

    Google Scholar 

  114. Cummins P, Perry SV. Chemical and immunochemical characteristics of tropomyosins from striated and smooth muscle. Biochem J 1974; 141: 43–9.

    PubMed  CAS  Google Scholar 

  115. Lehrer SS, Stafford III WF. Preferential assembly of the tropomyosin heterodimer: equilibrium studies. Biochemistry 1991; 30: 5682–8.

    Article  PubMed  CAS  Google Scholar 

  116. Graceffa P. Heat-treated smooth muscle tropomyosin. Biochim Biophys Acta 1992; 1120: 205–7.

    Article  PubMed  CAS  Google Scholar 

  117. Elliot A, Lowy J. Parry DAD, Vibert PJ. Puzzle of the coiled coils in the alpha-protein paramyosin. Nature 1968; 218: 656–9.

    Article  Google Scholar 

  118. Dḁbrowska R, Nowak E, Drabikowski W. Comparative studies of chicken gizzard and rabbit skeletal tropomyosin. Comp Biochem Physiol [B] 1980; 65: 75–83.

    Google Scholar 

  119. Sanders G, Smillie LB. Chicken gizzard tropomyosin: head-tail assembly and interaction with F-actin and troponin. Can J Biochem Cell Biol 1984; 62: 443–8.

    Article  PubMed  CAS  Google Scholar 

  120. Nowak E, Dbrowska R. Properties of carboxypeptidase A-treated chicken gizzard tropomyosin. Biochim Biophys Acta 1985; 829: 335–41.

    Article  PubMed  CAS  Google Scholar 

  121. Phillips Jr. GN, Fillers JP, Cohen C. Tropomyosin crystal structure and muscle regulation. J Mol Biol 1986; 192: 111–31.

    Article  PubMed  CAS  Google Scholar 

  122. Whitby FG, Kent H, Stewart F, Stewart M, Xie X, Hatch W, et al. Structure of tropomyosin at 9 Angstroms resolution. J Mol Biol 1992; 227: 441–52.

    Article  PubMed  CAS  Google Scholar 

  123. Sanders C, Sykes BD, Smillie LB. Comparison of the structure and dynamics of chicken gizzard and rabbit cardiac tropomyosins: 1H NMR spectroscopy and measurement of amide hydrogen exchange rates. Biochemistry 1988; 27: 7000–8.

    Article  PubMed  CAS  Google Scholar 

  124. Lehrer SS, Batteridge DR, Graceffa P, Wong S, Seidel JC. Comparison of the fluorescence and conformational properties of smooth and striated tropomyosin. Biochemistry 1984; 23: 1591–5.

    Article  PubMed  CAS  Google Scholar 

  125. Swenson CA, Stellwagen NC. Flexibility of smooth and skeletal tropomyosins. Biopolymers 1989; 28: 955–63.

    Article  PubMed  CAS  Google Scholar 

  126. Sobue K, Muramoto Y, Fujita M, Kakiuchi S. Purification of calmodulin-binding protein from chicken gizzard that interacts with F-actin. Proc Natl Acad Sci 1981; 78: 5652–5.

    Article  PubMed  CAS  Google Scholar 

  127. Horiuchi KY, Chacko S. Interaction between caldesmon and tropomyosin in the presence and absence of smooth muscle actin. Biochemistry 1988; 27: 8388–93.

    Article  PubMed  CAS  Google Scholar 

  128. Fujii T, Ozawa J, Ogoma Y, Kondo Y. Interaction between chicken gizzard caldesmon and tropomyosin. J Biochem 1988; 104: 734–7.

    PubMed  CAS  Google Scholar 

  129. Hemrick ME, Chalovich JM. Effect of caldesmon on the ATPase activity and the binding of smooth and skeletal myosin subfragments to actin. J Biol Chem 1988; 263: 1878–85.

    Google Scholar 

  130. Ikebe M, Reardon S. Binding of caldesmon to smooth muscle myosin. J Biol Chem 1988; 263: 3055–8.

    PubMed  CAS  Google Scholar 

  131. Bryan J, Imai M, Lee R, Moore P, Cook RG, Lin W. Cloning and expression of a smooth muscle caldesmon. J Biol Chem 1989; 264: 13873–9.

    PubMed  CAS  Google Scholar 

  132. Hayashi K, Kanda K, Kimizuka F, Kato I, Sobue K. Primary structure and functional expression of h-caldesmon complementary DNA. Biochem Biophys Res Comm 1989; 164: 503–11.

    Article  PubMed  CAS  Google Scholar 

  133. Bryan J, Lee R. Sequence of an avian non-muscle caldesmon. J Muscle Res Cell Motil 1991; 12: 372–5.

    Article  PubMed  CAS  Google Scholar 

  134. Hayashi K, Fujio Y, Kato I, Sobue K. Structural and functional relationships between h- and 1-caldesmons. J Biol Chem 1991; 266: 355–61.

    PubMed  CAS  Google Scholar 

  135. Haeberle JR, Hathaway DR, Smith CL. Caldesmon content of mammalian smooth muscles. J Muscle Res Cell Motil 1992; 13: 81–9.

    Article  PubMed  CAS  Google Scholar 

  136. Novy RE, Lin JL-C, Lin JJ-C. Characterization of cDNA clones encoding a human fibroblast caldesmon isoforms and analysis of caldesmon expression in normal and transformed cells. J Biol Chem 1991; 266: 16917–24.

    PubMed  CAS  Google Scholar 

  137. Marston SB, Redwood CS. The molecular anatomy of caldesmon. Biochem J 1991; 279: 1–16.

    PubMed  CAS  Google Scholar 

  138. Graceffa P, Wang C-LA, Stafford III WF. Caldesmon. Molecular weight and subunit composition by analytical ultracentrifugation. J Biol Chem 1988; 263: 14196–202.

    PubMed  CAS  Google Scholar 

  139. Mabuchi K, Wang C-LA. Electron microscopic studies of chicken gizzard caldesmon and its complex with calmodulin. J Muscle Res Cell Motil 1991; 12: 145–51.

    Article  PubMed  CAS  Google Scholar 

  140. Szpacenko A, Dḁbrowska R. Functional domain of caldesmon. FEBS Lett 1986; 202: 182–6.

    Article  PubMed  CAS  Google Scholar 

  141. Fujii T, Imai M, Rosenfeld GC, Bryan J. Domain mapping of chicken gizzard caldesmon. J Biol Chem 1987; 262: 2757–63.

    PubMed  CAS  Google Scholar 

  142. Yazawa M, Yagi K, Sobue K. Isolation and characterization of a calmodulin binding fragment of chicken gizzard caldesmon. J Biochem 1987; 102: 1065–73.

    PubMed  CAS  Google Scholar 

  143. Makuch R, Walsh MP, Dḁbrowska R. Localization of the calmodulin- and actin-binding domains at the C-terminus of caldesmon. FEBS Lett 1989; 247: 411–4.

    Article  PubMed  CAS  Google Scholar 

  144. Redwood CS, Marston SB, Bryan J, Cross RA, Kendrick-Jones J. The functional properties of full length and mutant chicken gizzard smooth muscle caldesmon expressed in Escherichia coli. FEBS Lett 1990; 270: 53–5.

    Article  PubMed  CAS  Google Scholar 

  145. Bartegi A, Fattoum A, Derancourt J, Kassab R. Characterization of carboxyl-terminal 10 kDa cyanogen bromide fragment of caldesmon as an actin-calmodulin-binding region. J Biol Chem 1990; 265: 15231–8.

    PubMed  CAS  Google Scholar 

  146. Chalovich JM, Bryan J, Benson CE, Velaz L. Localization and characterization of a 7.3-kDa region of caldesmon which reversibly inhibits actomyosin ATPase activity. J Biol Chem 1992; 267: 16644–50.

    PubMed  CAS  Google Scholar 

  147. Wang C-LA, Wang L-WC, Xu RC, Saavedra-Alanis V, Bryan J. Localization of the calmodulin- and actin-binding sites of caldesmon. J Biol Chem 1991; 266: 9166–72.

    PubMed  CAS  Google Scholar 

  148. Redwood CS, Marston SB. Binding and regulatory properties of expressed functional domains of chicken gizzard smooth muscle caldesmon. J Biol Chem 1993; 268: 10969–76.

    PubMed  CAS  Google Scholar 

  149. Leszyk J, Mornet D, Audemard E, Collins JH. Amino acid sequence of a 15 kilodalton actin-binding fragment of turkey gizzard caldesmon: similarity with dystrophin, tropomyosin and the tropomyosin-binding region of troponin T. Biochem Biophys Res Comm 1989; 160: 210–6.

    Article  PubMed  CAS  Google Scholar 

  150. Katayama E, Horiuchi KY, Chacko S. Characteristics of myosin and tropomyosin binding regions of smooth muscle caldesmon. Biochem Biophys Res Comm 1989; 160: 1316–22.

    Article  PubMed  CAS  Google Scholar 

  151. Zahn Q, Wong SS, Wang C-LA. A calmodulin-binding peptide of caldesmon. J Biol Chem 1991; 266: 21810–4.

    Google Scholar 

  152. Sutherland C, Walsh MP. Phosphorylation of caldesmon prevents its interaction with smooth muscle myosin. J Biol Chem 1989; 264: 578–83.

    PubMed  CAS  Google Scholar 

  153. Velaz I, Ingraham RH, Chalovich JM. Dissociation of the effect of caldesmon on the ATPase activity and on binding of smooth heavy meromyosin to actin by partial digestion of caldesmon. J Biol Chem 1990; 265: 2929–34.

    PubMed  CAS  Google Scholar 

  154. Czurylo EA, Venyaminov SY, Dḁbrowska R. Studies on secondary structure of caldesmon and its C-terminal fragments. Biochem J. 1993; 293: 363–8.

    PubMed  CAS  Google Scholar 

  155. Takahashi K, Hiwada K, Kokubu T. Isolation and characterization of a 34000-dalton calmodulin- and F-actin-binding protein from chicken gizzard smooth muscle. Biochem Biophys Res Comm 1986; 141: 20–6.

    Article  PubMed  CAS  Google Scholar 

  156. Takahashi K, Hiwada K, Kokubu T. Occurrence of anti-gizzard p34k antibody crossreactive components in bovine smooth muscles and non-muscle tissues. Life Sci 1987; 41: 291–6.

    Article  PubMed  CAS  Google Scholar 

  157. Takahashi K, Abe M, Hiwada K, Kokubu T. A novel troponin T-like protein (calponin) in vascular smooth muscle: interaction with tropomyosin paracrystals. J Hypertension 1988; 6: S40-S43.

    CAS  Google Scholar 

  158. Takahashi K, Nadal-Ginard B. Molecular cloning and sequence analysis of smooth muscle calponin. J Biol Chem 1991; 266: 13284–8.

    PubMed  CAS  Google Scholar 

  159. Vancompernolle K, Gimona M, Herzog M, Van Damme J, Vandekerckhove J, Small JV. Isolation and sequence of a tropomyosin-binding fragment of turkey gizzard calponin. FEBS Lett 1990; 274: 146–50.

    Article  PubMed  CAS  Google Scholar 

  160. Mezgueldi M, Fattoum A, Derancourt J, Kassab R. Mapping of the functional domains in the amino-terminal region of calponin. J Biol Chem 1992; 267: 15943–51.

    PubMed  CAS  Google Scholar 

  161. Stafford III WF, Mabuchi K, Takahashi K, Tao T. Physical properties of calponin. Biophys J 1993; 64: A31.

    Google Scholar 

  162. Lehman W, Craig R, Lui J, Moody C. Caldesmon and the structure of smooth muscle thin filaments: immunolocalization of caldesmon on thin filaments. J Muscle Res Cell Motil 1989; 10: 101–12.

    Article  PubMed  CAS  Google Scholar 

  163. Marston SB. Stoichiometry and stability of caldesmon in native thin filaments from sheep aorta smooth muscle. Biochem J 1990; 272: 305–311.

    PubMed  CAS  Google Scholar 

  164. Vibert PJ, Haselgrove JC, Lowy J, Poulsen FR. Structural changes in actin containing filaments of muscle. J Mol Biol 1972; 71: 757–67.

    Article  PubMed  CAS  Google Scholar 

  165. Popp D, Holmes KC. X-ray diffraction studies on oriented gels of vertebrate smooth muscle thin filaments. J Mol Biol 1992; 224: 65–76.

    Article  PubMed  CAS  Google Scholar 

  166. Moody C, Lehman W, Craig R. Caldesmon and the structure of smooth muscle thin filaments electron microscopy of isolated thin filaments. J Muscle Res Cell Motil 1990; 11: 176–85.

    Article  PubMed  CAS  Google Scholar 

  167. Lehman W, Craig R, Vibert P. Caldesmon may influence tropomyosin’s position on actin. Biophys J 1993; 64: A30.

    Google Scholar 

  168. Nishida W, Abe M, Takahashi K, Hiwada K. Do thin filaments of smooth muscle contain calponin? A new method for preparation. FEBS Lett 1990; 268: 165–8.

    Article  PubMed  CAS  Google Scholar 

  169. Horiuchi KY, Chacko S. The mechanism for the inhibition of actin-activated ATPase of smooth muscle heavy meromyosin by calponin. Biochem Biophys Res Comm 1991; 176: 1487–93.

    Article  PubMed  CAS  Google Scholar 

  170. Childs TJ, Watson MH, Novy RE, Lui JJ-C, Mak AS. Calponin and tropomyosin interactions. Biochim Biophys Acta 1992; 1121: 41–6.

    Article  PubMed  CAS  Google Scholar 

  171. Watson MH, Kuhn AE, Mak AS. Caldesmon, calmodulin and tropomyosin interactions. Biochim Biophys Acta 1990; 1054: 103–13.

    Article  PubMed  CAS  Google Scholar 

  172. Makuch R, Birukov K, Shirinsky V, Dḁbrowska R. Functional interrelationship between calponin and caldesmon. Biochem J 1991; 280: 33–8.

    PubMed  CAS  Google Scholar 

  173. Giembycz MA, Raeburn D. Current concepts on mechanisms of force generation and maintenance in airways smooth muscle. Pulm Pharmacol 1992; 5: 279–297.

    Article  PubMed  CAS  Google Scholar 

  174. Walsh MP. Calcium-dependent mechanism of regulation of smooth muscle contraction. Biochem Cell Biol 1990; 69: 771–800.

    Article  Google Scholar 

  175. Sobue K, Morimoto M, Inui M, Kanda K, Kakiuchi S. Control of actin-myosin interaction of gizzard smooth muscle by calmodulin- and caldesmon-linked flip flop mechanism. Biomed Res 1982; 3: 188–96.

    CAS  Google Scholar 

  176. Ngai PK, Walsh MP. Inhibition of smooth muscle actin-activated myosin Mg2+-ATPase activity by caldesmon. J Biol Chem 1984; 259: 13656–9.

    PubMed  CAS  Google Scholar 

  177. Dḁbrowska R, Goch A, Galzkiewicz B, Osińska H. The influence of caldesmon on ATPase activity of the skeletal muscle actomyosin and bundling of actin filaments. Biochim Biophys Acta 1985; 842: 70–5.

    Article  PubMed  Google Scholar 

  178. Smith CWJ, Pritchard K, Marston SB. The mechanism of Ca2+ regulation of vascular smooth muscle thin filaments by caldesmon and calmodulin. J Biol Chem 1987; 262: 116–22.

    PubMed  CAS  Google Scholar 

  179. Winder SJ, Walsh MP. Smooth muscle calponin. Inhibition of actomyosin MgATPase and regulation by phosphorylation. J Biol Chem 1990; 265: 10148–55.

    PubMed  CAS  Google Scholar 

  180. Abe M, Takahashi K, Hiwada K. Effect of calponin on actin-activated myosin ATPase activity. J Biochem 1990; 108: 835–8.

    PubMed  CAS  Google Scholar 

  181. Okagaki T, Higashi-Fujime S, Ishikawa R, Takano-Ohumuro H, Kohama K. In vitro movement of actin filaments on gizzard smooth muscle myosin: requirement of phosphorylation of myosin light chain and effects of tropmyosin and caldesmon. J Biochem 1991; 109: 858–66.

    PubMed  CAS  Google Scholar 

  182. Shirinsky VP, Biryukov KG, Hettasch JM, Sellers JR. Inhibition of the relative movement of actin and myosin by caldesmon and calponin. J Biol Chem 1992; 267: 15886–92.

    PubMed  CAS  Google Scholar 

  183. Haeberle JR, Trybus KM, Hemric ME, Warshaw DM. The effects of smooth muscle caldesmon on actin filament motility. J Biol Chem 1992; 267: 23001–6.

    PubMed  CAS  Google Scholar 

  184. Umekawa H, Hidaka H. Phosphorylation of caldesmon by protein kinase C. Biochem Biophys Res Comm 1985; 132: 56–62.

    Article  PubMed  CAS  Google Scholar 

  185. Scott-Woo GC, Sutherland C, Walsh MP. Kinase activity associated with caldesmon is Ca2+/calmodulin-dependent kinase II. Biochem J 1990; 268: 367–70.

    PubMed  CAS  Google Scholar 

  186. Winder SJ, Walsh MP. Structural and functional characterization of calponin fragments. Biochem Int 1990; 22: 335–41.

    Article  PubMed  CAS  Google Scholar 

  187. Ikebe M, Hornick T. Determination of the phosphorylation sites of smooth muscle caldesmon by protein kinase C. Arch Biochem Biophys 1991; 288: 538–42.

    Article  PubMed  CAS  Google Scholar 

  188. Levine BA, Moir AJG, Audemard E, Mornet D, Patchell VB, Perry SV. Structural study of gizzard caldesmon and its interaction with actin-binding involves residues of actin also recognized by myosin subfragment 1. Eur J Biochem 1990; 193: 687–96.

    Article  PubMed  CAS  Google Scholar 

  189. Bartegi A, Fattoum A, Kassab R. Cross-linking of smooth muscle caldesmon to the NH2-terminal region of skeletal F-actin. J Biol Chem 1990; 265: 2231–7.

    PubMed  CAS  Google Scholar 

  190. Graceffa P, Jancsò A. Disulfide cross-linking of caldesmon to actin. J Biol Chem 1991; 266: 20305–10.

    PubMed  CAS  Google Scholar 

  191. Adams S, Das Gupta G, Chalovich JM, Reisler E. Immunochemical evidence for the binding of caldesmon to the NH2-terminal segment of actin. J Biol Chem 1990; 265: 19652–7.

    PubMed  CAS  Google Scholar 

  192. Galzkiewicz B, Belagyi J, Dḁbrowska R. The effect of caldesmon on assembly and dynamic properties of actin. Eur J Biochem 1989; 181: 607–14.

    Article  Google Scholar 

  193. Harricane M-C, Bonet-Kerrache A, Cavadore C, Mornet D. Involvement of caldesmon at the actin-myosin interface. Eur J Biochem 1991; 196: 219–24.

    Article  PubMed  CAS  Google Scholar 

  194. Harricane M-C, Fabbrizio E, Arpin E, Mornet D. Involvement of caldesmon at the actin-myosin interface. Biochem J 1992; 287: 633–7.

    PubMed  CAS  Google Scholar 

  195. Nowak E, Borovikov YS, Dḁbrowska R. Caldesmon weakens the bonding between myosin and actin in ghost fibers. Biochim Biophys Acta 1989; 999: 289–92.

    Article  PubMed  CAS  Google Scholar 

  196. Brenner B, Yu LC, Chalovich JM. Parallel inhibition of active force and relaxed fiber stiffness in skeletal muscle by caldesmon: Implications for the pathway to force generation. Proc Natl Acad Sci 1991; 88: 5739–43.

    Article  PubMed  CAS  Google Scholar 

  197. Chalovich, JM, Yu LC, Brenner B. Involvement of weak binding crossbridges in force production in muscle. J Muscle Res Cell Motil 1991; 12: 503–6.

    Article  PubMed  CAS  Google Scholar 

  198. Marston S. Aorta caldesmon inhibits actin activation of phosphorylated heavy meromyosin Mg2+-ATPase activity by slowing the rate of product release. FEBS Lett 1988; 238: 147–150.

    Article  PubMed  CAS  Google Scholar 

  199. Marston SB, Redwood CS. Inhibition of actin-tropomyosin activation of myosin MgATPase activity by the smooth muscle regulatory protein caldesmon. J Biol Chem 1992; 267: 16796–800.

    PubMed  CAS  Google Scholar 

  200. Horiuchi KY, Samuel M, Chacko S. Mechanism for the inhibition of acto-heavy meromyosin ATPase by the actin/calmodulin binding of caldesmon. Biochemistry 1991; 30: 712–717.

    Article  PubMed  CAS  Google Scholar 

  201. Miki M, Walsh MP, Hartshorne DJ. The mechanism of inhibition of the actin-activated myosin MgATPase by calponin. Biochem Biophys Res Comm 1992; 187: 867–71.

    Article  PubMed  CAS  Google Scholar 

  202. Vancompernolle K, Vanderkerkhove J, Bubb MR, Korn D. The interfaces of actin and Acanthamoeba actobindin. Identification of a new actin-binding motif. J Biol Chem 1991; 266: 15427 – 31.

    PubMed  CAS  Google Scholar 

  203. Prichard K, Marston SB. Ca2+-calmodulin binding to caldesmon and the caldesmonactin-tropomyosin complex. Its role in Ca2+ regulation of the activity of synthetic smooth-muscle thin filaments. Biochem J 1989; 257: 839–43.

    Google Scholar 

  204. Pritchard K, Marston SB. The Ca2+-sensitizing component of smooth muscle thin filaments: properties of regulatory factors that interact with caldesmon. Biochem Biophys Res Comm 1993; 190: 668–73.

    Article  PubMed  CAS  Google Scholar 

  205. Mani RS, McCubbin WD, Kay CM. Calcium-dependent regulation of caldesmon by an 11-kDa smooth muscle calcium-binding protein, caltropin. Biochemistry 1992; 31: 11896–901.

    Article  PubMed  CAS  Google Scholar 

  206. Tanaka T, Ohita H, Hidaka T, Sobue K. Phosphorylation of high-Mr caldesmon by protein kinase C modulates the regulatory function of this protein on the interaction between actin and myosin. Eur J Biochem 190; 188: 495–500.

    Google Scholar 

  207. Lash JA, Sellers JR, Hathaway DR. The effects of caldesmon on smooth muscle heavy actomeromyosin ATPase activity and binding of heavy meromyosin to actin. J Biol Chew 1986; 261: 16155–60.

    CAS  Google Scholar 

  208. Pinter K, Marston SB. Phosphorylation of vascular smooth muscle caldesmon by endogenous kinase. FEBS Lett 1992; 305: 192–6.

    Article  PubMed  CAS  Google Scholar 

  209. Yamashiro S, Yamakita Y, Hosoya H, Matsumura F. Phosphorylation of non-muscle caldesmon by p34cdc2 kinase during mitosis. Nature 1991; 349: 169–72.

    Article  PubMed  CAS  Google Scholar 

  210. Mak AS, Watson MH, Litwin CME, Wang JH. Phosphorylation of caldesmon by cdc2 kinase. J Biol Chem 1991; 266: 6678–81.

    PubMed  CAS  Google Scholar 

  211. Winder SJ, Pato MD, Walsh MP. Purification and characterization of calponin phosphatase from smooth muscle. Effect of dephosphorylation on calponin function. Biochem J 1992; 286: 197–203.

    PubMed  CAS  Google Scholar 

  212. Pohl J, Walsh MP, Gerthoffer WT. Calponin and caldesmon phosphorylation in canine tracheal smooth muscle. Biophys J 1991; 59: 58a.

    Google Scholar 

  213. Bárány M, Rokolya A, Bárány K. Absence of calponin phosphorylation in contracting or resting arterial smooth muscle. FEBS Lett 1991; 279: 65–8.

    Article  PubMed  Google Scholar 

  214. Gimona M, Sparrow MP, Strasser P, Herzog M, Small V. Calponin and SM 22 isoforms in avian and mammalian smooth muscle. Absence of phosphorylation in vivo. Eur J Biochem 1992; 205: 1067–75.

    Article  PubMed  CAS  Google Scholar 

  215. Szpacenko A, Wagner J, Dḁbrowska R, Rüegg JC. Caldesmon-induced inhibition of ATPase activity of actomyosin and contraction of skinned fibers of chicken gizzard smooth muscle. FEBS Lett 1985; 192: 9–12.

    Article  PubMed  CAS  Google Scholar 

  216. Taggart JM, Marston S. The effects of vascular smooth muscle caldesmon on force production by sensitized skeletal muscle fibers. FEBS Lett 1988; 242: 171–4.

    Article  PubMed  CAS  Google Scholar 

  217. Katsuyama H, Wang C-LA, Morgan KG. Regulation of vascular smooth muscle tone by caldesmon. J Biol Chem 1992; 267: 14555–8.

    PubMed  CAS  Google Scholar 

  218. Walsh MP, Sutherland C. A model for caldesmon in latch-bridge formation in smooth muscle. Adv Exp Med Biol 1989; 255: 337–46.

    Article  PubMed  CAS  Google Scholar 

  219. Marston SB. What is latch? New ideas about tonic contraction in smooth muscle. J Muscle Res Cell Motil 1989; 10: 97–100.

    Article  PubMed  CAS  Google Scholar 

  220. Adam LP, Haeberle JR, Hathaway DR. Phosphorylation of caldesmon in arterial smooth muscle. J Biol Chem 1989; 264: 7698–703.

    PubMed  CAS  Google Scholar 

  221. Adam LP, Gapinski CJ, Hathaway DR. Phosphorylation sequences in h-caldesmon from phorbol ester-stimulated canine aortas. FEBS Lett 1992; 302: 223–6.

    Article  PubMed  CAS  Google Scholar 

  222. Park S, Rasmussen H. Carbachol-induced protein phosphorylation changes in bovine tracheal smooth muscle. J Biol Chem 1986; 261; 15734–9.

    PubMed  CAS  Google Scholar 

  223. Adam LP, Milio L, Brengle B, Hathaway DR. Myosin light chain and caldesmon phosphorylation in arterial muscle stimulated with endothelin-1. J Mol Cell Cardiol 1990; 22: 1017–23.

    Article  PubMed  CAS  Google Scholar 

  224. Bárány M, Polyak E, Bárány K. Protein phosphorylation during the contraction-relaxation cycle of arterial smooth muscle. Arch Biochem Biophys 1992; 294: 571–8.

    Article  PubMed  Google Scholar 

  225. Marston SB, Pinter K, Bennet P. Caldesmon binds to smooth muscle myosin and myosin rod and crosslinks thick filaments to actin filaments. J Muscle Res Cell Motil 1992; 13: 206 – 18.

    Article  PubMed  CAS  Google Scholar 

  226. McDaniel NL, Rembold CM, Murphy R. Covalent cross-bridge regulation in smooth muscle. Ann N Y Acad Sci 1990; 599: 66–74.

    Article  PubMed  CAS  Google Scholar 

  227. Small JV, Fürst DO, Thornell L-C. The cytoskeletal lattice of muscle cells. Eur J Biochem 1992; 208: 559–72.

    Article  PubMed  CAS  Google Scholar 

  228. Small JV, North AJ. Architecture of the smooth muscle cell. In: Schwartz SM, editor. Smooth muscle cells: molecular and cell biology. New York: Academic Press. In press.

    Google Scholar 

  229. Fürst DO, Cross RA, De Mey J, Small JV. Caldesmon is an elongated, flexible molecule localized in the actomyosin domains of smooth muscle. EMBO J 1986; 5: 251–7.

    PubMed  Google Scholar 

  230. Draeger A, Amos WB, Ikebe M, Small JV. The cytoskeletal and contractile apparatus of smooth muscle: contraction bands and segmentation of the contractile elements. J Cell Biol 1990; 111: 2463–73.

    Article  PubMed  CAS  Google Scholar 

  231. Somlyo AV, Franzini-Armstrong C. New views of smooth muscle structure using freezing, deep-etching and rotary shadowing. Experientia 1985; 41: 841–56.

    Article  PubMed  CAS  Google Scholar 

  232. Kargacin GJ, Cooke PH, Abramson SB, Fay FS. Periodic organization of the contractile apparatus in smooth muscle revealed by the motion of the dense bodies in single cells. J Cell Biol 1989; 108: 1465–75.

    Article  PubMed  CAS  Google Scholar 

  233. Geiger B, Dutton AH, Tokuasu T, Singer SJ. Immunoelectron microscope studies on membrane microfilament interaction: Distribution of alpha actinin, tropomyosin and vinculin in intestinal epithelial brush border and chicken gizzard smooth muscle cells. J Cell Biol 1981; 91: 614–28.

    Article  PubMed  CAS  Google Scholar 

  234. Imamura M, Endo T, Kuroda M, Tanaka T, Masaki T. Substructure and higher structure of chicken smooth muscle α-actinin molecule. J Biol Chem 1988; 263: 7800–5.

    PubMed  CAS  Google Scholar 

  235. Geiger B, Ginsberg D. The cytoplasmic domain of adherens-type junctions. Cell Motil Cytoskel 1991; 20: 1–6.

    Article  CAS  Google Scholar 

  236. Gabella G. Smooth muscle cell membrane and allied structures. In: Stephens NL, editor. Smooth muscle contraction. New York: Marcel Dekker Inc., 1984: 21–45.

    Google Scholar 

  237. Draeger A, Stelzer EHK, Herzog M, Small JV. Unique geometry of actin-membrane anchorage sites in avian gizzard smooth muscle cells. J Cell Sci 1989; 94: 703–16.

    PubMed  Google Scholar 

  238. Luna EJ, Hitt AL. Cytoskeleton-plasma membrane interactions. Science 1992; 258: 955–64.

    Article  PubMed  CAS  Google Scholar 

  239. Harricane M-C, Augier N, Leger J, Anoal M, Cavadore C, Mornet D. Ultrastructural localization of dystrophin in chicken smooth muscle. Cell Biol Int Rep 1991; 15: 687–97.

    Article  PubMed  CAS  Google Scholar 

  240. Hemming L, Kuhlman PA, Critchley DR. Analysis of the actin-binding domain of α-actinin by mutagenesis and demonstration that dystrophin contains a functionally homologous domain. J Cell Biol 1992; 116: 1369–80.

    Article  Google Scholar 

  241. Hock RS, Davis G, Speicher DW. Purification of human smooth muscle filamin and characterization of structural domains and functional sites. Biochemistry 1990; 29: 9441–51.

    Article  PubMed  CAS  Google Scholar 

  242. Small JV, Fürst DO, De Mey J. Localization of filamin in smooth muscle. J Cell Biol 1986; 102: 210–220.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Basel AG

About this chapter

Cite this chapter

Dąbrowska, R. (1994). Actin and Thin-Filament-Associated Proteins in Smooth Muscle. In: Raeburn, D., Giembycz, M.A. (eds) Airways Smooth Muscle: Biochemical Control of Contraction and Relaxation. Respiratory Pharmacology and Pharmacotherapy. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7681-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7681-0_2

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-7683-4

  • Online ISBN: 978-3-0348-7681-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics