Skip to main content

Cyclic Nucleotide Phosphodiesterases in Airways Smooth Muscle

  • Chapter

Part of the book series: Respiratory Pharmacology and Pharmacotherapy ((RPP))

Abstract

Bronchial asthma is a pulmonary disorder characterised by reversible airflow obstruction and mucosal inflammation [1]. The oedema and hypermucous secretion, which are major features of this inflammation, probably contribute to the compromised airways function; however, it is generally agreed that the predominant cause of the airflow obstruction is a powerful and inappropriate constriction of bronchial smooth muscle as a consequence of exposure of the airways to antigen or other noxious stimuli.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Djukanovic R, Roche WR, Wilson JW, Beasley CRW, Twentyman OP, Howarth PH, Holgate ST. Mucosal inflammation in asthma. Am Rev Resp Dis 1990; 142: 434–57.

    Article  PubMed  CAS  Google Scholar 

  2. Bai TR. Beta2 adrenergic receptors in asthma: A current perspective. Lung 1992; 170: 125–41.

    Article  PubMed  CAS  Google Scholar 

  3. Torphy TJ. Biochemical regulation of airway smooth muscle tone: Current knowledge and therapeutic implications. Rev Clin Basic Pharmacol 1987; 6: 61–103.

    CAS  Google Scholar 

  4. Butcher RW, Sutherland EW. Adenosine 3′,5′-phosphate in biological materials. J Biol Chem 1962; 237: 1244–50.

    PubMed  CAS  Google Scholar 

  5. Newton RP, Sabih SG, Khan JA. Cyclic CMP-specific phosphodiesterase activity. In: Beavo J, Houslay MD, editors. Cyclic nucleotide phosphodiesterases: Structure, regulation and drug action. Wiley, Chichester 1990; 141–59.

    Google Scholar 

  6. Beavo JA, Reifsnyder DH. Primary sequence of cyclic nucleotide phosphodiesterase isozymes and the design of selective inhibitors. Trends Pharmacol Sci 1990; 11: 150–5.

    Article  PubMed  CAS  Google Scholar 

  7. Michaeli T, Bloom TJ, Martins T, Loughney K, Ferguson K, Riggs M, Rodgers L, Beavo JA, Wigler M. Isolation and characterisation of a previously undetected human cAMP phosphodiesterase by complementation of cAMP phosphodiesterase-deficient Saccharomyces cerevisiae. J Biol Chem 1993; 268: 12925–32.

    PubMed  CAS  Google Scholar 

  8. Souness JE, Brazdil R, Diocee BK, Jordan R. Role of selective cyclic GMP phosphodiesterase inhibition in the myorelaxant actions of M&B 22948, MY-5445, vinpocetine and 1-methyl-3-isobutyl-8-(methylamino) xanthine. Br J Pharmacol 1989; 98: 725–34.

    Article  PubMed  CAS  Google Scholar 

  9. Levin RM, Weiss B. Binding of trifluoperazine to the calcium dependent activator of cyclic nucleotide phosphodiesterase. Mol Pharmacol 1977; 13: 690–7.

    PubMed  CAS  Google Scholar 

  10. Nakanishi S, Osawa K, Saito Y, Kawamoto I, Kuroda K, Kase H. KS-505a, a novel inhibitor of bovine brain Ca2+ and calmodulin-dependent cyclic-nucleotide phosphodiesterase from streptomyces argenteolus. J Antibiotics 1992; 45: 341–7.

    Article  CAS  Google Scholar 

  11. Müller A, Nennstiel P. Selective inhibition of the cGMP-stimulated cyclic nucleotide phoshodiesterase from pig and human myocardium. J Mol Cell Cardiol 1992; 24 (Suppl V) S102.

    Article  Google Scholar 

  12. Murray KJ, England PJ, Hallam TJ, Maguire J, Moores K, Reeves ML, Simpson AWM, Rink TJ. The effects of siguazodan, a selective phosphodiesterase inhibitor, on human platelet function. Br J Pharmacol 1990; 99: 612–6.

    Article  PubMed  CAS  Google Scholar 

  13. Hidaka H, Tanaka T, Itoh H. Selective inhibitors of cyclic nucleotide phosphodiesterases. Trends Pharmacol Sci 1984; 5: 237–9.

    Article  CAS  Google Scholar 

  14. Murray KJ, Eden RJ, Dolan JS, Grimsditch DC, Stutchbury CA, Patel B, Knowles A, Worby A, Lynham JA, Coates WJ. The effect of SK&F 95654, a novel phosphodiesterase inhibitor, on cardiovascular, respiratory and platelet function. Br J Pharmacol 1992; 107: 463–70.

    Article  PubMed  CAS  Google Scholar 

  15. Shahid M, van Amsterdam RGM, de Boer J, ten Berge RE, Nicholson CD, Zaagsma J. The presence of five cyclic nucleotide phosphodiesterase isoenzyme activities in bovine tracheal smooth muscle and the functional effects of selective inhibitors. Br J Pharmacol 1991; 104: 471–7.

    Article  PubMed  CAS  Google Scholar 

  16. Harrison SA, Reifsnyder DH, Gallis B, Cadd GG, Beavo JA. Isolation and characterisation of bovine cardiac muscle cGMP-inhibited phosphodiesterase: A receptor for new cardiotonic drugs. Mol Pharmacol 1986; 29: 506–14.

    PubMed  CAS  Google Scholar 

  17. Kariya T, Dage RC. Tissue distribution and selective inhibition of subtypes of high affinity phosphodiesterase. Biochem Pharmacol 1988; 37: 3267–70.

    Article  PubMed  CAS  Google Scholar 

  18. Némoz G, Moueqquit M, Prigent A-F, Pacheco H. Isolation of similar rolipram-inhibitable cyclic AMP-specific phosphodiesterases from rat brain and heart. Eur J Biochem 1989; 184: 511–20.

    Article  PubMed  Google Scholar 

  19. Glaser T, Traber J. TVX 2706 — a new phosphodiesterase inhibitor with anti-inflammatory action: Biochemical characterisation. Agents Actions 1984; 15: 341–8.

    Article  PubMed  CAS  Google Scholar 

  20. Nicholson CD, Jackman SA, Wilke R. The ability of denbufylline to inhibit cyclic nucleotide phosphodiesterase and its affinity for adenosine receptors and the adenosine re-uptake site. Br J Pharmacol 1989; 97: 889–97.

    Article  PubMed  CAS  Google Scholar 

  21. Murray KJ. Phosphodiesterase VA inhibitors. DN&P 1993; 6: 150–156.

    Google Scholar 

  22. Gillespie PG, Beavo JA. Inhibition and stimulation of photoreceptor phosphodiesterase by dipyridamole and M&B 22,948. Mol Pharmacol 1989; 36: 773–81.

    PubMed  CAS  Google Scholar 

  23. Thompson WJ. Cyclic nucleotide phosphodiesterases: Pharmacology, biochemistry and function. Pharmac Ther 1991; 51: 13–33.

    Article  CAS  Google Scholar 

  24. Beavo JA. Multiple isozymes of cyclic nucleotide phosphodiesterase. Adv Second Messenger Phosphoprotein Res 1988; 20: 1–38.

    Google Scholar 

  25. Bently JK, Kadlecek A, Sherbert CH, Seger D, Sonnenburg WK, Charbonneau H, Novack JP, Beavo JA. Molecular cloning of cDNA encoding a “63”-kDa calmodulinstimulated phosphodiesterase from bovine brain. J Biol Chem 1992; 267: 18676–82.

    Google Scholar 

  26. Repaske DR, Swinnen JV, Jin S-LC, Van Wyke JJ, Conti M. A polymerase chain reaction strategy to identify and clone cyclic nucleotide phosphodiesterase cDNAs. Molecular cloning of the cDNA encoding the 63-kDa calmodulin-dependent phosphodiesterase. J Biol Chem 1992; 267: 18683–18688.

    PubMed  CAS  Google Scholar 

  27. Sonnenburg WK, Mullaney PJ, Beavo JA. Molecular cloning of a cyclic GMP-stimulated cyclic nucleotide phosphodiesterase cDNA. Identification and distribution of isozyme variants. J Biol Chem 1991; 266: 17655–61.

    PubMed  CAS  Google Scholar 

  28. Meacci E, Taira M, Moos M. Jr, Smith CJ, Movsesian MA, Degerman E, Belfrage P, Manganiello V. Molecular cloning and expression of human myocardial cGMP-inhibited cAMP phosphodiesterase. Proc Natl Acad Sci USA 1992; 89: 3421–5.

    Article  Google Scholar 

  29. Taira M, Hockman SC, Calvo JC, Taira M, Belfrage P, Manganiello V. Molecular cloning of the rat adipocyte hormone-sensitive cyclic GMP-inhibited cyclic nucleotide phosphodiesterase. J Biol Chem 1993; 268: 18573–9.

    PubMed  CAS  Google Scholar 

  30. Livi GP, Kmetz P, McHale M, Cieslinski L, Sathe GM, Taylor DJ, Davis RL, Torphy T, Balcarek JM. Cloning and expression of cDNA for a human low-Km, rolipram sensitive cAMP phosphodiesterase. Mol Cell Biol 1990; 10: 2678–86.

    PubMed  CAS  Google Scholar 

  31. McLaughlin MM, Cieslinski LB, Burman M, Torphy TJ, Livi GP. A low-Km, rolipramsensitive, cAMP-specific phosphodiesterase from human brain. Cloning and expression of cDNA, biochemical characterisation of recombinant protein, and tissue distribution of mRNA. J Biol Chem 1993; 268: 6470–6.

    PubMed  CAS  Google Scholar 

  32. Colicelli J, Birchmeier C, Michaeli T, O’Neill K, Riggs M, Wigler M. Isolation and characterisation of a mammalian gene encoding a high-affinity cAMP phosphodiesterase. Proc Natl Acad Sci USA 1989; 3599–603.

    Google Scholar 

  33. Davies RL, Takaysasu H, Eberwine M, Myres J. Cloning and characterisation of mammalian homologs of the Drosophila dunce + gene. Proc Natl Acad Sci USA 1989; 86: 3604–8.

    Article  Google Scholar 

  34. Swinnen JV, Joseph DR, Conti M. Molecular cloning of rat homologues of the Drosophila melanogaster dunce cAMP phosphodiesterase: Evidence for a family of genes. Proc Natl Acad Sci USA 1989; 86: 5325–9.

    Article  PubMed  CAS  Google Scholar 

  35. Swinnen JV, Tsikalas KE, Conti M. Properties and hormonal regulation of two structurally related cAMP phosphodiesterases from rat sertoli cells. J Biol Chem 1991; 266: 18370–7.

    PubMed  CAS  Google Scholar 

  36. Pittler SJ, Baehr W, Wasmuth JJ, McConnell DG, Champagne MS, van Tuinen P, Ledbetter D, Davis RL. Molecular characterisation of human and bovine rod photoreceptor cGMP phosphodiesterase α-subunit and chromosomal location of the human gene. Genomics 1990; 6: 272–83.

    Article  PubMed  CAS  Google Scholar 

  37. Baehr W, Champagne MS, Lee AK, Pittler SJ. Complete cDNA sequences of mouse rod photoreceptor cGMP phosphodiesterase alpha- and beta- subunits, and identification of beta-prime, a putative beta-subunit isozyme produced by alternative splicing of the beta-subunit. FEBS Lett 1991; 278: 107–14.

    Article  PubMed  CAS  Google Scholar 

  38. Sharma RK, Wang JH. Regulation of cAMP concentration by calmodulin-dependent cyclic nucleotide phosphodiesterase. Biochem Cell Biol 1982a; 64: 1072–80.

    Article  Google Scholar 

  39. Sharma RK, Wang JH. Purification and characterisation of bovine lung calmodulin-dependent cyclic nucleotide phosphodiesterase. An enzyme containing calmodulin as a subunit. J Biol Chem 1986b; 261: 14160–6.

    PubMed  CAS  Google Scholar 

  40. Sharma RK, Wang TH, Wirch T, Wang JH. Purification and properties of bovine brain calmodulin-dependent cyclic nucleotide phosphodiesterase. J Biol Chem 1980; 255: 5916–23.

    PubMed  CAS  Google Scholar 

  41. Rossi P, Giorgi M, Geremia R, Kincaid RL. Testis-specific calmodulin-dependent phosphodiesterase. A distinct high-affinity isoenzyme immunologically related to brain calmodulin-dependent cGMP phosphodiesterase. J Biol Chem 1988; 263: 15521–7.

    PubMed  CAS  Google Scholar 

  42. Torphy TJ, Cieslinski LB. Characterisation and selective inhibition of cyclic nucleotide phosphodiesterase isozymes in canine tracheal smooth muscle. Mol Pharmacol 1990; 37: 206–14.

    PubMed  CAS  Google Scholar 

  43. Torphy TJ, Undem BJ, Phosphodiesterase inhibitors: new opportunities for the treatment of asthma. Thorax 1991; 46: 512–23.

    Article  PubMed  CAS  Google Scholar 

  44. Sharma RK. Phosphorylation and characterisation of bovine heart calmodulin-dependent phosphodiesterase. Biochemistry 1991; 30: 5963–8.

    Article  PubMed  CAS  Google Scholar 

  45. Hashimoto Y, Sharma RK, Soderling TR. Regulation of Ca2+ /calmodulin-dependent cyclic nucleotide phosphodiesterase by the autophosphorylated form of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 1989; 264: 10884–7.

    PubMed  CAS  Google Scholar 

  46. Martins TJ, Mumby MC, Beavo JA. Purification and characterisation of a cyclic GMP-stimulated cyclic nucleotide phosphodiesterase from bovine tissues. J Biol Chem 1982; 257: 1973–9.

    PubMed  CAS  Google Scholar 

  47. Moss J, Manganiello VC, Vaughan M. Substrate and effector specificity of a guanosine 3′:5′-monophosphate phosphodiesterase from rat liver. J Biol Chem 1977; 252: 5211–5.

    PubMed  CAS  Google Scholar 

  48. Manganiello VC, Tanaka T, Murashima S. Cyclic GMP-stimulated cyclic nucleotide phosphodiesterases. In: Beavo J, Houslay MD, editors. Cyclic nucleotide phosphodiesterases: Structure, regulation and drug action. Wiley, Chichester, 1990; 61–85.

    Google Scholar 

  49. Manganiello VC, Smith CJ, Degerman E, Belrage P. Cyclic GMP-inhibited cyclic nucleotide phosphodiesterases. In: Beavo J, Houslay MD, editors. Cyclic nucleotide phosphodiesterases: Structure, regulation and drug action. Wiley, Chichester, 1990; 87–117.

    Google Scholar 

  50. Smith CJ, Krall J, Manganiello VC, Movsesian MA. Cytosolic and sarcoplasmic reticulum-associated low Km, cGMP-inhibited cAMP phosphodiesterase in mammalian myocardium. Biochem Biophys Res Commun 1993; 190: 516–21.

    Article  PubMed  CAS  Google Scholar 

  51. Masuoka H, Ito M, Sugioka M, Kozeki H, Konishi T, Tanaka T, Nakano T. Two isoforms of cGMP-inhibited cyclic nucleotide phosphodiesterases in human tissues distinguished by their responses to vesnarinone, a new cardiatonic agents. Biochem Biophys Res Commun 1993; 190: 412–7.

    Article  PubMed  CAS  Google Scholar 

  52. Houslay MD, Kilgour E. Cyclic nucleotide phosphodiesterases in liver. A review of their characterisation, regulation by insulin and glucagon and their role in controlling intracellular cyclic AMP concentrations. In: Beavo J, Houslay MD, editors. Cyclic nucleotide phosphodiesterases: Structure, regulation and drug action. Wiley, Chichester, 1990; 141–59.

    Google Scholar 

  53. Grant PG, Mannarino AF, Colman RW. cAMP-mediated phosphorylation of the low-Km cAMP phosphodiesterase markedly stimulates its catalytic activity. Proc Natl Acad Sci USA 1988; 85: 9071–5.

    Article  PubMed  CAS  Google Scholar 

  54. Macphee CH, Reifsnyder DH, Moore TA, Lerea KM, Beavo JA. Phosphorylation results in activation of a cAMP phosphodiesterase in human platelets. J Biol Chem 1988; 263: 10353–8.

    PubMed  CAS  Google Scholar 

  55. Conti M, Swinnen JV. Structure and function of the rolipram-sensitive low-Km cyclic AMP phosphodiesterases: A family of highly related enzymes. In: Beavo J, Houslay MD, editors. Cyclic nucleotide phosphodiesterases: Structure, regulation and drug action. Wiley, Chichester, 1990; 244–66.

    Google Scholar 

  56. Torphy TJ, Stadel JM, Burman M, Cieslinski LB, McLaughlin MM, White JR, Livi GP. Coexpression of human cAMP-specific phosphodiesterase activity and high-affinity rolipram binding in yeast. J Biol Chem 1992; 267: 1798–1804.

    PubMed  CAS  Google Scholar 

  57. Torphy TJ, Livi GP. Phosphodiesterase isozymes in airways. In: Lung biology in health and disease. Vol 67 — Pharmacology of the respiratory tract. Experimental and clinical research. Chung KF, Barnes PJ (eds). Marcel-Dekker, New York, 177–222.

    Google Scholar 

  58. Torphy TJ, Zhou H-L, Cieslinski LB. Stimulation of Beta adrenoceptors in a human monocyte cell line (U937) up regulates cyclic AMP-specific phosphodiesterase activity. J Pharmacol Exp Ther 1992; 263: 1195–1205.

    PubMed  CAS  Google Scholar 

  59. Valette L, Prigent AF, Némoz G, Anker G, Macovschi O, Lagarde M. Concanavalin A stimulates the rolipram-sensitive isoforms of cyclic nucleotide phosphodiesterase in rat thymic lymphocytes. Biochem Biophys Res Commun 1990; 169: 864–72.

    Article  PubMed  CAS  Google Scholar 

  60. Okonogi K, Gettys TW, Uhing RJ, Tarry WC, Adams DO, Prpic V. Inhibition of prostaglandin E2-stimulated cAMP accumulation by lipopolysaccharide in murine peritoneal macrophages. J Biol Chem 1991; 266: 10305–12.

    PubMed  CAS  Google Scholar 

  61. Francis SH, Thomas MK, Corbin JD. Cyclic GMP-binding cyclic GMP-specific phosphodiesterase from lung. In: Beavo J, Houslay MD, editors. Cyclic nucleotide phosphodiesterases: Structure, regulation and drug action. Wiley, Chichester, 1990; 117–40.

    Google Scholar 

  62. Robichon A. A new cGMP phosphodiesterase isolated from bovine platelets is a substrate for cAMP- and cGMP- dependent protein kinases: Evidence for a key role in the process of platelet activation. J Cell Biochem 1991; 47: 147–57.

    Article  PubMed  CAS  Google Scholar 

  63. Burns F, Rodger IW, Pyne NJ. The catalytic subunit of protein kinase A triggers activation of the type V cyclic GMP-specific phosphodiesterase from guinea-pig lung. Biochem J 1992; 283: 487–91.

    PubMed  CAS  Google Scholar 

  64. Gillespie PG. Phosphodiesterases in visual transduction by rods and cones. In: Beavo J, Houslay MD, editors. Cyclic nucleotide phosphodiesterases: Structure regulation and drug action. Wiley, Chichester, 1990; 141–159.

    Google Scholar 

  65. Ichimura M, Kase H. A new cyclic nucleotide phosphodiesterase isozyme expressed in the T-lymphocyte cell lines. Biochem Biophys Res Commun 1993; 193: 985–90

    Article  PubMed  CAS  Google Scholar 

  66. Silver PJ, Hamel LT, Perrone MH, Bentley RG, Bushover CR, Evans DB. Differential pharmacologic sensitivity of cyclic nucleotide phosphodiesterase isozymes isolated from cardiac muscle, arterial and airway smooth muscle. Eur J Pharmacol 1988; 150: 85–94.

    Article  PubMed  CAS  Google Scholar 

  67. Polson JB, Krzanowski JJ, Szentivanyi A. Correlation between inhibition of a cyclic GMP phosphodiesterase and relaxation of canine tracheal smooth muscle. Biochemical Pharmacol 1985; 34: 1875–9.

    Article  CAS  Google Scholar 

  68. Harris AL, Connell MJ, Ferguson EW, Wallace AM, Gordon RJ, Pagani ED, Silver PJ. Role of low Km cyclic AMP phosphodiesterase inhibition in tracheal relaxation and bronchodilation in the guinea-pig. J Pharmacol Exp Ther 1989; 251: 199–206.

    PubMed  CAS  Google Scholar 

  69. Giembycz MA, Barnes PJ. Selective inhibition of a high affinity type IV cyclic AMP phosphodiesterase in bovine trachealis by AH 21–132. Relevance to the spasmolytic and anti-spasmogenic actions of AH 21–132 in the intact tissue. Biochem Pharmacol 1991; 42: 663–77.

    Article  PubMed  CAS  Google Scholar 

  70. Torphy TJ, Cieslinski LB. Characterisation and selective inhibition of cyclic nucleotide phosphodiesterase isozymes in canine tracheal smooth muscle. Mol Pharmacol 1990; 37: 206–14.

    PubMed  CAS  Google Scholar 

  71. Li T, Volpp KT, Applebury ML. Bovine cone photoreceptor cGMP phosphodiesterase structure deduced from a cDNA clone. Proc Natl Acad Sci USA 1990; 87: 293–7.

    Article  PubMed  CAS  Google Scholar 

  72. Zhou H-L, Newsholme SJ, Torphy TJ. Agonist-related differences in the relationship between cAMP content and protein kinase activity in canine trachealis. J Pharmacol Exp Ther 1992; 261: 1260–7.

    PubMed  CAS  Google Scholar 

  73. Reeves ML, England PJ. Cardiac phosphodiesterases and the functional effects of selective inhibition. In: Beavo J, Houslay MD, editors. Cyclic nucleotide phosphodiesterases: Structure, regulation and drug action. Wiley, Chichester, 1990; 299–316.

    Google Scholar 

  74. Miller JR, Wells JN. Effects of isoproterenol on active force and Ca2+ calmodulin-sensitive phosphodiesterase activity in porcine coronary artery. Biochem Pharmacol 1987; 36: 1819–24.

    Article  PubMed  CAS  Google Scholar 

  75. Katsuki S, Murad F. Regulation of adenosine cyclic 3′,5′-monophosphate and guanosine cyclic 3′,5′-monophosphate levels and contractility in bovine tracheal smooth muscle. Mol Pharmacol 1977; 13: 330–41.

    PubMed  CAS  Google Scholar 

  76. O’Conner BJ, Aikman SL, Barnes PJ. Tolerance to the nonbronchodilator effects of inhaled β 2-agonists in asthma. N Engl J Med 1992; 327: 1204–8.

    Article  Google Scholar 

  77. Torphy TJ, Zhou H-L, Burman M, Huang LBF. Role of cyclic nucleotide phosphodiesterase isozymes in intact canine trachealis. Mol Pharmacol 1991; 39: 376–84.

    PubMed  CAS  Google Scholar 

  78. Torphy TJ, Burman M, Huang LBF, Tucker SS. Inhibition of the low Km cyclic AMP phosphodiesterase in intact canine trachealis by SK&F 94836: Mechanical and biochemical responses. J Pharmacol Exp Ther 1988; 246: 843–50.

    PubMed  CAS  Google Scholar 

  79. Zhou H-L, Torphy TJ. Relationship between cyclic guanosine monophosphate accumulation and relaxation of canine trachealis induced by nitrovasodilators. J Pharmacol Exp Ther 1991; 258: 972–8.

    PubMed  CAS  Google Scholar 

  80. Chilvers ER, Giembycz MA, Challis RAJ, Barnes PJ, Nahorski SR. Lack of effect of zaprinast on methacholine-induced contraction and inositol 1,4,5-triphosphate accumulation in bovine tracheal smooth muscle. Br J Pharmacol 1991; 103: 1119–25.

    Article  PubMed  CAS  Google Scholar 

  81. Hall IP, Widdop S, Townsend P, Daykin K. Control of cyclic AMP levels in primary cultures of human tracheal smooth muscle cells. Br J Pharmacol 1992; 107: 422–8.

    Article  PubMed  CAS  Google Scholar 

  82. Walseth TF, Graeff RM, Goldberg ND. Monitoring cyclic nucleotide metabolism in intact cells by 18O labeling. In: Corbin JD, Johnson RA, editors. Methods in Enzymol. Academic Press, New York, 1988; 159: 60–73.

    Google Scholar 

  83. Barber R, Goka TJ, Butcher RW. Role of high-affinity cAMP phosphodiesterase activities in the response of S49 cells to agonists. Mol Pharmacol 1987; 32: 735–59.

    Google Scholar 

  84. Houslay MD. The use of selective inhibitors and computer modelling to evaluate the role of specific high affinity cyclic AMP phosphodiesterases in the hormonal regulation of hepatocyte intracellular cyclic AMP concentrations. Cell Sig 1990; 2: 85–98.

    Article  CAS  Google Scholar 

  85. Whalin ME, Scammell JG, Strada J, Thompson WJ. Phosphodiesterase II, the cGMPactivatable cyclic nucleotide phosphodiesterase, regulates cyclic AMP metabolism in PC12 cells. Mol Pharmacol 1991; 39: 711–7.

    PubMed  CAS  Google Scholar 

  86. MacFarland RT, Zelus BD, Beavo JA. High concentrations of a cGMP-stimulated phosphodiesterase mediate ANP-induced decreases in cAMP and steroidogenesis in adrenal glomerulosa cells. J Biol Chem 1991; 266: 136–42.

    PubMed  CAS  Google Scholar 

  87. Giembycz MA, Raeburn D. Putative substrates for cyclic nucleotide-dependent protein kinases and the regulation of airway smooth muscle tone. J Autonomic Pharmacol 1991; 11: 365–98.

    Article  CAS  Google Scholar 

  88. Rhoden KJ, Barnes PJ. Potentiation of non-adrenergic neural relaxation in guinea-pig airways by a cyclic AMP phosphodiesterase inhibitor. J Pharmacol Exp Ther 1990; 252: 396–402.

    PubMed  CAS  Google Scholar 

  89. Smith PF, Thompson WJ, de Haen C, Halonen M, Palmer JD, Johnson DG. Bronchodilator activity of a nonxanthine phosphodiesterase inhibitor; 2,4-diamino-5-cyano-6bromopyridine (compound). J Pharmacol Exp Ther 1986; 237: 114–9.

    PubMed  CAS  Google Scholar 

  90. Tomkinson A, Karlsson J-A, Raeburn D. Comparison of the effects of selective inhibitors of phosphodiesterase type III and IV in airway smooth muscle with differing β-adrenoceptor subtypes. Br J Pharmacol 1993; 108: 57–61.

    Article  PubMed  CAS  Google Scholar 

  91. Small RC, Boyle JP, Duty S, Elliot KRF, Foster RW, Watt AJ. Analysis of the relaxant effects of AH 21–132 in guinea-pig isolated trachealis. Br J Pharmacol 1989; 97: 1165–73.

    Article  PubMed  CAS  Google Scholar 

  92. Langlands JM, Rodger IW, Diamond J. The effect of M&B 22948 on methacholine- and histamine- induced contraction and inositol 1,4,5-triphosphate levels in guinea-pig tracheal tissue. Br J Pharmacol 1989; 98: 336–8.

    Article  PubMed  CAS  Google Scholar 

  93. Lindgren S, Rascon A, Anderson K-E, Manganiello V, Degerman E. Selective inhibition of cGMP-inhibited and cGMP non-inhibited cyclic nucleotide phosphodiesterase and relaxation of rat aorta. Biochem Pharmacol 1991; 42: 545–52.

    Article  PubMed  CAS  Google Scholar 

  94. Souness JE, Hassall GA, Parrott DP. Inhibition of pig aortic smooth muscle cell DNA synthesis by selective type III and type IV cyclic AMP phosphodiesterase inhibitors. Biochem Pharmacol 1992; 44: 857–66.

    Article  PubMed  CAS  Google Scholar 

  95. Robicsek SA, Blanchard DK, Djeu JY, Krzanowski JJ, Szentivanyi A, Polson JB. Multiple high-affinity cAMP-phosphodiesterases in human T-lymphocytes. Biochem Pharmacol 1991; 42: 869–77.

    Article  PubMed  CAS  Google Scholar 

  96. Souness JE, Maslen C, Scott LC. Effects of solubilisation and vanadate/glutathione complex on inhibitor potencies against eosinophil cyclic AMP-specific phosphodiesterase. FEBS Lett 1992; 302: 181–4.

    Article  PubMed  CAS  Google Scholar 

  97. Souness JE, Scott LC. Stereospecificity of rolipram actions on eosinophil cyclic AMPspecific phosphodiesterase. Biochem J 1993; 291: 389–95.

    PubMed  CAS  Google Scholar 

  98. Fredholm BB, Brodin K, Strandberg K. On the mechanism of relaxation of tracheal muscle by theophylline and other cyclic nucleotide phosphodiesterase inhibitors. Acta Pharmacol Toxicol 1979; 45: 336–44.

    Article  CAS  Google Scholar 

  99. Underwood DC, Osborn RR, Novak LB, Matthews JK, Newsholme SJ, Undem BJ, Hand JM, Torphy TJ. Inhibition of antigen-induced bronchoconstriction and eosinophil infiltration in the guinea-pig by the cyclic AMP-specific phosphodiesterase inhibitor, rolipram. J Pharmacol Exp Ther 1993; 266: 306–13.

    PubMed  CAS  Google Scholar 

  100. Torphy TJ, Undem BD, Cielsinski LB, Luttmann MA, Reeves ML, Hay DWP. Identification, characterisation and functional role of phosphodiesterase isozymes in human airway smooth muscle. J Pharmacol Exp Ther 1993; 265: 1213–23.

    PubMed  CAS  Google Scholar 

  101. Bergstrand H, Lundqvist B. Partial purification and characterisation of cyclic nucleotide phosphodiesterases from human bronchial tissue. Mol Cell Biochem 1978; 21: 9–15.

    Article  PubMed  CAS  Google Scholar 

  102. Cortijo J, Bou J, Beleta J, Cardelus I, Llenas J, Morcillo E, Gristwood RW. Investigation into the role of phosphodiesterase IV in bronchorelaxation, including studies with human bronchus. Br J Pharmacol 1993; 108: 562–8.

    Article  PubMed  CAS  Google Scholar 

  103. deBoer J, Philpott AJ, van Amsterdam RGM, Shahid M, Zaagsma J, Nicholson CD. Human bronchial cyclic nucleotide phosphodiesterase isoenzymes: biochemical and pharmacological analysis using selective inhibitors. Br J Pharmacol 1992; 106: 1028–34.

    Article  CAS  Google Scholar 

  104. Giembycz MA, Belvisi MG, Miura M, Perkins RS, Kelly JJ, Tadjkarimi S, Yacoub MH, Barnes PJ. Soluble cyclic nucleotide phosphodiesterase isoenzymes in human tracheal smooth muscle. Br J Pharmacol 1992; 107: 52P.

    Google Scholar 

  105. Rabe KF, Tenor H, Dent G, Schudt C, Liebig S, Magnussen H. Phosphodiesterase isozymes modulating inherent tone in human airways: identification and characterisation. Am J Physiol 1993; 264: L458–64.

    PubMed  CAS  Google Scholar 

  106. Purvis K, Rui H. High affinity, calmodulin-dependent isoforms of cyclic nucleotide phosphodiesterases in rat testis. Methods Enzymol 1988; 159: 675–85.

    Article  PubMed  CAS  Google Scholar 

  107. Sharma RK, Wang JH. Regulation of cAMP concentration by calmodulin-dependent cyclic nucleotide-dependent phosphodiesterase. Biochem Cell Biol 1986; 64: 1072–80.

    Article  PubMed  CAS  Google Scholar 

  108. Wright CD, Kuipers PJ, Kobylarz-Singer D, Devall LK, Klinkfus BA, Weishaar RE. Differential inhibition of human neutrophil functions: role of cyclic AMP-specific GMP-insensitive phosphodiestrase. Biochem Pharmacol 1990; 40: 699–707.

    Article  PubMed  CAS  Google Scholar 

  109. Kelly JJ, Barnes PJ, Giembycz MA. Evidence for multiple type IV-like phosphodiesterases in guinea-pig macrophages. Am Rev Resp Dis 1993; 147: A935.

    Google Scholar 

  110. Dent G, Giembycz MA, Rabe KF, Barnes PJ. Inhibition of eosinophil cyclic nucleotide PDE activity and opsonised zymosan-stimulated respiratory burst by ‘type IV’-selective PDE inhibitors. Br J Pharmacol 1991; 103: 1339–46.

    Article  PubMed  CAS  Google Scholar 

  111. Souness JE, Carter CM, Diocee BK, Hassall GA, Wood LJ, Turner NC. Characterisation of guinea-pig eosinophil phosphodiesterase activity. Assessment of its involvement in regulating superoxide generation. Biochem Pharmacol 1991; 42: 937–45.

    Article  PubMed  CAS  Google Scholar 

  112. Belvisi MG, Miura M, Peters MJ, Ward JK, Tadjkarimi S, Yacoub MH, Giembycz MA, Barnes PJ. Effect of isoenzyme-selective cyclic nucleotide phosphodiesterase inhibitors on human tracheal smooth muscle tone. Br J Pharmacol 1992; 107: 53P.

    Google Scholar 

  113. Qian Y, Naline E, Karlsson J-A, Raeburn D, Advenier C. Effects of rolipram and siguazodan on the human isolated bronchus and their interaction with isoprenaline and sodium nitroprusside. Br J Pharmacol 1993; 109: 774–8.

    Article  PubMed  CAS  Google Scholar 

  114. Torphy TJ, Rinard GA, Rietwo MG, Mayer SE. Functional antagonism in canine tracheal smooth muscle: inhibition by methacholine of the mechanical and biochemical response to isoproterenol. J Pharmacol Exp Ther 1983; 227: 694–9.

    PubMed  CAS  Google Scholar 

  115. Jones TR, Charette L, Garcia ML, Kaczorowski GJ. Selective inhibition of relaxation of guinea-pig trachea by charybdotoxin, a protent Ca++-activated K+ channel opener. J Pharmacol Exp Ther 1990; 255: 697–706.

    PubMed  CAS  Google Scholar 

  116. Miura M, Belvisi MG, Stretton CD, Yacoub MH, Barnes PJ. Role of K+ channels in bronchodilator responses in human airways. Am Rev Resp Dis 1992; 73: 1537–41.

    CAS  Google Scholar 

  117. Wolfe JD, Tashkin DP, Calverase B, Simmons M. Bronchodilator effects of terbutaline and aminophylline alone or in combination in asthmatic patients. N Engl J Med 1978; 298: 363–67.

    Article  PubMed  CAS  Google Scholar 

  118. Campbell IA, Middleton WG, McHardy GJR, Shotter MV, McKenzie LV, Kay AB. Interaction between isoprenaline and aminophylline in asthma. Thorax 1977; 32: 424–8.

    Article  PubMed  CAS  Google Scholar 

  119. Lefcoe NM, Toogood JH, Jones TR. In vitro pharmacological studies of bronchodilator compounds: interactions and mechanisms. J Allergy Clin Immunol 1975; 55: 94–102.

    Google Scholar 

  120. Lohmann SM, Miech RP, Butcher FR. Effects of isoproterenol, theophylline and carbachol on cyclic nucleotide levels and relaxation of bovine tracheal smooth muscle. Biochim Biophys Acta 1977; 499: 238–50.

    Article  PubMed  CAS  Google Scholar 

  121. Triner L, Vulliemoz Y, Verosky M. Cyclic 3′,5′-adenosine monophosphate and bronchial tone. Eur J Pharmacol 1977; 41: 37–46.

    Article  PubMed  CAS  Google Scholar 

  122. Svedmyr N. The roles of theophylline in asthma therapy. Scand J Resp Dis 1977; Suppl 101: 125–37.

    CAS  Google Scholar 

  123. Svedmyr N. β 2-Adrenoceptor stimulants and theophylline in asthma therapy. Eur J Resp Dis 1982; 62(Suppl 116): 1–48.

    Google Scholar 

  124. Billing B, Dahlqvist R, Garle M, Hornblad Y, Ripe E. Separate and combined use of terbutaline and theophyllines in asthmatics. Effects related to serum concentrations. Eur J Resp Dis 1982; 63: 399–406.

    CAS  Google Scholar 

  125. Shenfield GM. Combination bronchodilator therapy. Drugs 1982; 24: 414–39.

    Article  PubMed  CAS  Google Scholar 

  126. Howell RE, Sickels BD, Woeppel SL. Pulmonary antiallergic and bronchodilator effects of isoenzyme-selective phosphodiesterase inhibitors in guinea-pigs. J Pharmacol Exp Ther 1993; 264: 609–15.

    PubMed  CAS  Google Scholar 

  127. Giembycz MA. Could isoenzyme-selective phosphodiesterase inhibitors render bronchodilator therapy redundant in the treatment of bronchial asthma. Biochem Pharmacol 1992; 43: 2041–51.

    Article  PubMed  CAS  Google Scholar 

  128. Giembycz MA, Dent G. Prospects for selective cyclic nucleotide phosphodiesterase inhibitors in the treatment of bronchial asthma. Clin Exp Allergy 1982; 22: 337–44.

    Article  Google Scholar 

  129. Hanifin JM, Chan SC. Characterisation of cAMP-phosphodiesterase as a possible laboratory marker of atopic dermatitis. Drug Development Res 1988; 13: 123–36.

    Article  CAS  Google Scholar 

  130. Fisher TA, Erbel R, Treese N. Current status of phosphodiesterase inhibitors in the treatment of congestive heart failure. Drugs 1992; 44: 928–45.

    Article  Google Scholar 

  131. Gristwood RW, Sampford KA. Inhibition of histamine-induced bronchoconstriction by SK&F 94836, salbutamol and theophylline in the anaesthetised guinea-pig. Br J Pharmacol 1987; 92: 631P.

    Google Scholar 

  132. Raeburn D, Sharma S, Buckley GB, Underwood SL, Tomkinson A, Karlsson J-A. Comparison of isoenzyme-selective phosphodiesterase (PDE) inhibitors and theophylline on histamine-induced bronchospasm in the anaesthetised guinea-pig. Eur Resp J 1992; 5: Suppl 15: 214s.

    Google Scholar 

  133. Underwood DC, Kotzer CJ, Bochnowicz S, Osburn RR, Luttmann MA, Hay DWP, Torphy TJ. Comparison of effects of phosphodiesterase (PDE) III, IV and dual III/IV inhibitors on histamine and antigen-induced bronchospasm and pulmonary eosinophil influx in guinea-pigs. Am Rev Resp Dis 1993; 147: A183.

    Google Scholar 

  134. Heaslip RJ, Buckley SK, Sickels BD, Grimes D. Bronchial vs. cardiovascular activities of selective phosphodiesterase inhibitors in the anaesthetised beta-blocked dog. J Pharmacol Exp Ther 1991; 257: 741–7.

    PubMed  CAS  Google Scholar 

  135. Small RC, Berry JL, Boyle JP, Chapman ID, Elliott KRF, Foster RW, Watt AJ. Biochemical and electrical aspects of the relaxant action of AH 21–132. Eur J Pharmacol Exp Ther 1991; 192: 417–26.

    Article  CAS  Google Scholar 

  136. Murray KJ, England PJ. Inhibitors of cyclic nucleotide phosphodiesterases as therapeutic agents. Biochem Soc Trans 1992; 20: 460–4.

    PubMed  CAS  Google Scholar 

  137. Colucci W, Wright R, Braunwald E. New positive inotropic agents in the treatment of congestive heart failure: mechanisms of action and recent clinical developments. New Engl J Med 1986; 314: 349–58.

    Article  PubMed  CAS  Google Scholar 

  138. Leeman M, Lejeune P, Melot C, Naeije R. Reduction in pulmonary hypertension and in airway resistance by enoximone (MDL 17,043) in decompensated COPD. Chest 1987; 91: 662–6.

    Article  PubMed  CAS  Google Scholar 

  139. Bewley JS, Chapman ID. AH 21–132 a novel relaxant of airway smooth muscle. Br J Pharmacol 1989; 93: 52P.

    Google Scholar 

  140. Brunnee T, Engelstatter R, Steinijans VW, Kunkel G. Bronchodilatory effect of zardaverine, a phosphodiesterase III and IV inhibitor, in patients with asthma. Eur Resp J 1992; 5: 982–5.

    CAS  Google Scholar 

  141. Foster RW, Rakshi K, Carpenter JR, Small RC. Trials of the bronchodilator activity of the isoenzyme selective phosphodiesterase inhibitor AH 21–132 in healthy volunteers during a methacholine challenge. Br J Clin Pharmacol 1992; 34: 527–34.

    Article  PubMed  CAS  Google Scholar 

  142. Beume R, Kilian U, Brand U, Hafner D, Eltze M, Flockkerzi D. The bronchospasmolytic effect of the PDE III/IV inhibitors B9004–070 and zardaverine-dependency on the route of administration in guinea-pigs. Am Rev Resp Dis 1993; 147: A184.

    Google Scholar 

  143. Kilian U, Beume R, Eltze M, Schudt C. Is phosphodiesterase inhibition a relevant bronchospasmolytic principle? Agents Actions 1989; Suppl 28: 331–48.

    CAS  Google Scholar 

  144. Drewitt IJ, Rodger IW. Assessment of bronchodilator effect of rolipram in the anaesthetised cat. Br J Pharmacol 1990; 99: 192P.

    Google Scholar 

  145. Heaslip RJ, Sickels BD. Bronchodilatory activity and selectivity of WAY-PDA-641, rolipram, and aminophylline in the anaesthetised rat. Am Rev Resp Dis 1993; 147: A182.

    Article  Google Scholar 

  146. Heaslip RJ, Sickels BD, Evans DY. Bronchodilatory activity and selectivity of WAYPDA-641 in the anaesthetised serotonin-infused dog. Am Rev Resp Dis 1993; 147: A182.

    Article  Google Scholar 

  147. Israel E, Mathur PN, Tachkin D, Drazen JM. LY 168855 prevents bronchospasm in asthma of moderate severity. Chest 1987; 91: 71S.

    Google Scholar 

  148. Murray KJ, Eden RJ, England PJ, Dolan JS, Grimsditch DC, Stutchbury CA, Patel B, Reeves ML, Worby A, Torphy Ti, Wood LM, Warrington BL, Coates WJ. Potential use of selective phosphodiesterase inhibitors in the treatment of asthma. Agents Actions 1991; Suppl 34: 27–46.

    CAS  Google Scholar 

  149. Reiser J, Yeang Y, Warner JO. The effect of zaprinast, an orally absorbed mast cell stabiliser, on exercise-induced asthma in children. Br J Dis Chest 1986; 80: 157–63.

    Article  PubMed  CAS  Google Scholar 

  150. Rudd RM, Gellert AR, Studdy PR, Geddes DM. Inhibition of exercise-induced asthma by an orally absorbed mast cell stabiliser (M&B 22948) Br J Dis Chest 1983; 77: 78–86.

    Article  PubMed  CAS  Google Scholar 

  151. Francis SH, Noblett BD, Todd BW, Wells JN, Corbin JD. Relaxation of vascular and tracheal smooth muscle by cyclic nucleotide analogues that perferentially activate purified cGMP-dependent protein kinase. Mol Pharmacol 1988; 34: 506–17.

    PubMed  CAS  Google Scholar 

  152. Obernolte R, Bhahta S, Alvarez R, Bach C, Zuppan P, Mulkins M, Jarnagin K, Shelton ER. The cDNA of a human lymphocyte cyclic-AMP phosphodiesterase (PDE IV) reveals a multigene family. Gene 1993; 129: 239–47.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Basel AG

About this chapter

Cite this chapter

Souness, J.E., Giembycz, M.A. (1994). Cyclic Nucleotide Phosphodiesterases in Airways Smooth Muscle. In: Raeburn, D., Giembycz, M.A. (eds) Airways Smooth Muscle: Biochemical Control of Contraction and Relaxation. Respiratory Pharmacology and Pharmacotherapy. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7681-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7681-0_13

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-7683-4

  • Online ISBN: 978-3-0348-7681-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics