Polynomial Bases on the Sphere

  • Noemí Laín Fernández
Part of the ISNM International Series of Numerical Mathematics book series (ISNM, volume 142)


Considering that the well-known basis of spherical harmonics of degree at most n is not localized on the sphere, we construct better localized polynomial bases by means of reproducing kernels. Such a construction leads to the problem of finding sets of (n + 1)2 points on the sphere that admit unique polynomial interpolation. Finally, we present a possible construction of polynomial wavelets on the sphere.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Fischer, B., Prestin, J.: Wavelets based on orthogonal polynomials, Math. Comp, 66, (1997), 1593–1618.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    Freeden, W., Gervens, T. and Schneider, M.: Constructive Approximation on the Sphere: with Applications to Geomathematics, Clarendon Press: Oxford, (1998).zbMATHGoogle Scholar
  3. [3]
    Golitschek M. v. and Light. W.A.: Interpolation by Polynomials and Radial Basis Functions on Spheres, Constr. Approx., 17, (2001), 1–18.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    Müller, C.: Spherical Harmonics, Springer: Berlin, Heidelberg, New York, (1966).Google Scholar
  5. [5]
    Reimer, M.: Constructive Theory of Multivariate Functions: with an application to tomography, Mannheim; Wien; Zürich: BI-Wiss.-Verl., (1990).zbMATHGoogle Scholar
  6. [6]
    Sündermann, B.: Projektionen auf Polynomräumen in mehreren Veränderlichen, Diss. Dortmund (1983).Google Scholar
  7. [7]
    Xu, Y.: Polynomial Interpolation on the unit sphere,submitted.Google Scholar

Copyright information

© Birkhäuser Verlag, Basel 2002

Authors and Affiliations

  • Noemí Laín Fernández
    • 1
  1. 1.Department of MathematicsUniversity of LübeckLübeckGermany

Personalised recommendations