Advertisement

De la Vallée Poussin Means for the Hankel Transform

  • Wolfgang zu Castell
  • Frank Filbir
Part of the ISNM International Series of Numerical Mathematics book series (ISNM, volume 142)

Abstract

We give a construction of a de la Vallée Poussin kernel for the Hankel transform based on the convolution structure on the space L 1 (R +, µ v ). In contrast to the classical way to define such a kernel, our construction directly leads to an approximate identity for the underlying space.

Keywords

Bessel Function Orthogonal Polynomial Approximate Identity Convolution Theorem Underlying Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Andrews, G., R. Askey & R. Roy, Special functions, Cambridge University Press, Cambridge, 1999.zbMATHGoogle Scholar
  2. [2]
    Betancor, J.J. & L. Rodriguez-Mesa, L 1 -convergence and strong summability of Hankel transforms, Publ. Math. Debrecen 55 No. 3–4 (1999), 437–451.MathSciNetzbMATHGoogle Scholar
  3. [3]
    Butzer, P.L. & R.J. Nessel, Fourier analysis and approximation, Vol. I, Birkhäuser, Basel, 1971.zbMATHCrossRefGoogle Scholar
  4. [4]
    Chanillo, S. & B. Muckenhoupt, Weak type estimates for Bochner-Riesz spher-ical summation multipliers,Trans. Amer. Math. Soc. 294 No. 2 (1986), 693— 703.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    Colzani, L., G. Travaglini & M. Vignati, Bochner-Riesz means of functions in weak-LP, Mh. Math. 115 (1993), 35–45.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    Filbir, F. & W. Themistoclakis, On the construction of de la Vallée Poussin means for orthogonal polynomials using convolution structures,to appear in J. Comput. Anal. Appl.Google Scholar
  7. [7]
    Luke, Y.L., The special functions and their approximations, Vol. I, Academic Press, New York, 1969.zbMATHGoogle Scholar
  8. [8]
    Magnus, W., F. Oberhettinger & R.P. Soni, Formulas and theorems for the special functions of mathematical physics, Springer, Berlin, 1966.zbMATHGoogle Scholar
  9. [9]
    Stein, E.M. & G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, 1971.zbMATHGoogle Scholar
  10. [10]
    Stempak, K., The Littlewood-Paley theory for the Fourier-Bessel transform, University of Wroclaw, Preprint no. 45, 1985.Google Scholar
  11. [11]
    Stempak, K., La théorie de Littlewood-Paley pour la transformation de Fourier-Bessel, C.R. Acad. Sc. Paris 303 Série I (1986), 15–18.Google Scholar
  12. [12]
    Watson, G.N., A treatise on the theory of Bessel functions, reprint of the 2nd edition, Cambridge University press, Cambridge, 1996.Google Scholar

Copyright information

© Birkhäuser Verlag, Basel 2002

Authors and Affiliations

  • Wolfgang zu Castell
    • 1
  • Frank Filbir
    • 1
  1. 1.Institute of Biomathematics and BiometryGSF — National Research Center for Environment and HealthNeuherbergGermany

Personalised recommendations