Advertisement

Approximation on Compact Subsets of R

  • Vilmos Totik
Conference paper
Part of the ISNM International Series of Numerical Mathematics book series (ISNM, volume 142)

Abstract

The role polynomial approximation of the lxl function in approximation theory, as well as some recent developments on the subject is discussed. In particular, we show how a strengthening of the classical approximation of lxl can lead to the Jackson theory.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S.N. Bernstein, Sur la meilleure approximation de Ix’ par des polynômes des degrés donnés, Acta Math. (Scandinavian), 37 (1914), 1–57.Google Scholar
  2. [2]
    S.N. Bernstein, On the best approximation of lxIP by means of polynomials of extremely high degree, Izv. Akad. Nauk SSSR,Ser. Mat. 2(1938), 160–180. Reprinted in S.N. Bernstein Collected Works,Vol. 2, pp. 262–272. Izdat. Nauk SSSR, Moscow, 1954 (Russian).Google Scholar
  3. [3]
    S.N. Bernstein, On the best approximation of Ix - cr, Dokl. Akad. Nauk SSSR,18(1938), 379–384. Reprinted in S.N. Bernstein Collected Works,Vol. 2, pp. 273–260. Izdat. Nauk SSSR, Moscow, 1954 (Russian).Google Scholar
  4. [4]
    A.B. Bogatyrev, Effective computation of Chebyshev polynomials for several intervals, Math. USSR Sb., 190(1999),1571–1605.MathSciNetzbMATHGoogle Scholar
  5. [5]
    T. Erdélyi, A. Kroó and J. Szabados, Markov-Bernstein type inequalities on compact subsets of R, Analysis Math,26(2000), 17-34.CrossRefzbMATHGoogle Scholar
  6. [6]
    K.G. Ivanov and V. Totik, Fast decreasing polynomials, Constr. Approx.,6(1990), 1-20 MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    K.G. Ivanov, E.B. Saff and V. Totik, Approximation by polynomials with locally geometric rates, Proc. Amer. Math. Soc., 106(1989),153–161.MathSciNetCrossRefGoogle Scholar
  8. [8]
    H. Lebesgue, Sur l’approximation des fonctions, Bull. Sci. Math. 22(1898)278–287 Google Scholar
  9. [9]
    Allan Pinkus, Weierstrass and approximation theory, J. Approx. Theory, 107 (2000), 1–66.zbMATHGoogle Scholar
  10. [10]
    F. Peherstorfer, Deformation of minimizing polynomials and approximation of several intervals by an inverse polynomial mapping, J. Approx. Theory, 111(2001), 180–195 MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    E.B. Saff and V. Totik, Logarithmic Potentials with External Fields,Grundlehren der mathematischen Wissenschaften, 316 Springer Verlag, Berlin, Heidelberg, 1997 Google Scholar
  12. [12]
    V Totik, Polynomial inverse images of intervals and polynomial inequalities, Acta Math (Scandinavian), 187(2001)139–160 MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    V Totik, Polynomial approximation with locally geometric rates, Approximation Theory,Proc. Conf. in Kecskemét, Hungary, 1990, Coll Math. Soc. Janos Bolyai, 58, Akadémiai Kiadó/North-Holland, Budapest 1992 663–671 MathSciNetGoogle Scholar
  14. [14]
    R. Varga and A.J. Carpenter, On the Bernstein conjecture in approximation theory, Constr. Approx., 1(1985), 333–348 MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    R.K. Vasiliev, Chebyshev Polynomials and Approximation Theory on Compact Subsetc of the Real Axis,Saratov University Publishing House1998 Google Scholar

Copyright information

© Birkhäuser Verlag Basel 2002

Authors and Affiliations

  • Vilmos Totik
    • 1
    • 2
  1. 1.Bolyai InstituteUniversity of SzegedHungary
  2. 2.Department of MathematicsUniversity of South FloridaTampaUSA

Personalised recommendations