Advertisement

Semigroups Associated to Mache Operators

Part of the ISNM International Series of Numerical Mathematics book series (ISNM, volume 142)

Abstract

Mache operators are investigated from the point of view of Altomare’s theory. We prove the existence of a Feller semigroup representable as a limit of suitable iterates of Mache operators. The preservation properties of Mache operators lead to qualitative properties of the solution of the associated Cauchy problem. A new Chernoff type approach to the semigroup is presented, as well as quantitative results related to it.

Keywords

Bernstein Operator Preservation Property Fell Semigroup Limit Semigroup Positive Contraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Altomare, F., Limit semigroups of Bernstein-Schnabl operators associated with positive projections, Ann. Sc. Norm. Sup. Pisa, cl. Sci. IV, 16 (1989), 259–279.MathSciNetzbMATHGoogle Scholar
  2. [2]
    Altomare, F. and Campiti, M., Korovkin-type Approximation Theory and its Applications, W. de Gruyter, Berlin-New York, 1994.zbMATHCrossRefGoogle Scholar
  3. [3]
    Altomare, F. and Carbone, I., On some degenerate differential operators on weighted function spaces, J. Math. Anal. Appl. 213 (1997), 308–333.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    Altomare, F. and Attalienti, A., Forward diffusion equations and positive operators, Math. Z. 225 (1997), 211–229.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    Altomare, F. and Attalienti, A., Degenerate evolution problems and related Markov processes arising from Mathematical Finance, Part I and II, preprints, Bari University (2001).Google Scholar
  6. [6]
    Altomare, F. and Mangino, E.M., On a class of elliptic-parabolic equations on unbounded intervals, Positivity, 2000.Google Scholar
  7. [7]
    Altomare, F. and Rasa, I., Towards a characterization of a class of differential operators associated with positive projections, Atti Sem. Mat. Fis. Univ. Modena Suppl. 46 (1998), 3–38.MathSciNetzbMATHGoogle Scholar
  8. [8]
    Altomare, F. and Rasa, I., Feller semigroups, Bernstein type operators and generalized convexity associated with positive projections, in: New Developments in Approximations Theory (eds.) M.D. Buhmann, M. Felten, D.H. Mache und M.W. Müller), Int. Series of Numerical Mathematics Vol. 132, Birkhäuser Verlag, Basel (1999), 9–32.Google Scholar
  9. [9]
    Attalienti, A., Generalized Bernstein-Durrmeyer operators and the associated limit semigroup, J. A.prox. Theory 99 (1999), 289–309.MathSciNetzbMATHGoogle Scholar
  10. [10]
    Adell, J.A. and de la Cal, J., Bernstein-Durrmeyer operators, Comp. Math. Appl. 30 (1995), 1–14.zbMATHGoogle Scholar
  11. [11]
    Campiti, M., Binomial-type coefficients and classical approximation processes,in: Handbook of analytic-computational methods in applied mathematics, (ed.) G. Anastassiou, Boca Raton, FL: Chapman and Hall/CRC, (2000), 947996.Google Scholar
  12. [12]
    Campiti, M. and Metafune, G., Evolution equations associated with recursively defined Bernstein-type operators, J. Approx. Theory 87 (1996), 270–290.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    Campiti, M., Metafune, G. and Pallara, D., Generalized Voronovskaja formula and solutions of second-order degenerate differential equations, Rev. Roum. Math. Pures Appl. 44 (1999), 755–766.MathSciNetzbMATHGoogle Scholar
  14. [14]
    Clement, Ph. and Timmermans, C.A., On Co-semigroups generated by differential operators satisfying Ventcel’s boundary conditions, Indag. Math. 89 (1986), 379–387.MathSciNetCrossRefGoogle Scholar
  15. [15]
    Durrmeyer, J.J., Une formule d’inversion de la transformée de Laplace: Applications à la théorie des moments, Thèse de 3ième cycle, Univ. Paris, 1967.Google Scholar
  16. [16]
    Derriennic, M.M., Sur l’approximation des fonctions d’une ou plusieurs variables par des polynômes de Bernstein modifiés et application au problème des moments, These de 3ième cycle, Univ. de Rennes, 1978.Google Scholar
  17. [17]
    Dickmeis, W. and Nessel, R.J., Classical approximation processes in connection with Lax equivalence theorems with orders, Acta Sci. Math. 40 (1978), 33–48.MathSciNetzbMATHGoogle Scholar
  18. [18]
    Engel, K.J. and Nagel, R., One-parameter semigroups for linear evolution equations, Springer-Verlag (2000).Google Scholar
  19. [19]
    Gavrea, I., Gonska, H.H. and Kacso, D.P., On the variation-diminishing property, Resultate Math. 33 (1998), 96–105.MathSciNetzbMATHGoogle Scholar
  20. [20]
    Lupas, A., Die Folge der Beta Operatoren, Dissertation. Stuttgart (1972).Google Scholar
  21. [21]
    Mache, D.H., Gewichtete Simultanapproximation in der L P -Metrik durch das Verfahren der Kantorovic Operatoren, Dissertation, Univ. Dortmund (1991).Google Scholar
  22. [22]
    Mache, D.H., A Link between Bernstein Polynomials and Durrmeyer Polynomials with Jacobi Weights, in: Approximation Theory VIII, VoL. 1, Approximation and Interpolation, Charles K. Chui and Larry L. Schumaker (eds.), World Scientific Publishing Co., (1995), 403–410.Google Scholar
  23. [23]
    Mache, D.H. and Zhou, D.X., Characterization Theorems for the Approximation by a Family of Operators, J. Approx. Theory 84 (1996), 145–161.MathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    Pazy, A., Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, (1983).Google Scholar
  25. [25]
    Rasa, I., Feller semigroups, elliptic operators and Altomare projections, to appear in Proc. 4th FAAT Maratea (2000).Google Scholar
  26. [26]
    Rasa, I. and Vladislav, T., A Voronovskaja-type formula and preservation properties of a class of operators, Proc. Roger 2000, Univ. Duisburg, Schriftenreihe Fach. Math. SM-DU-485 (2000), 120–123.Google Scholar
  27. [27]
    Vladislav, T. and Rasa, I., Analiza Numerica, Aproximare, problema lui Cauchy abstracta, proiectori Altomare, Editura Tehnica, Bucuresti (1999).Google Scholar

Copyright information

© Birkhäuser Verlag Basel 2002

Authors and Affiliations

  • I. Rasa

There are no affiliations available

Personalised recommendations