Skip to main content

Part of the book series: Methods and Tools in Biosciences and Medicine ((MTBM))

Abstract

To many workers in the field, the classical multilocus fingerprinting approaches based on the electrophoretic separation of DNA restriction fragments followed by probing with suitable probes is now an obsolete methodology. This is because such procedures are laborious, require much technical skill, depend on high molecular weight DNA to start with and do not easily lend themselves to automation and electronic data storage. Multilocus DNA fingerprinting also requires a different statistical approach than single locus profiling (see the chapter of Krawczak, this volume). For three main reasons, however, this approach should remain in the discussion: (1) It is the method in kinship testing and trace analysis work least likely to unravel unwanted additional information on other personal genetic traits: other than with single locus techniques, the assignment of multilocus DNA fingerprint bands to alleles to loci is not obvious. (2) The shortcomings listed above are not unsurmountable in principle; technological progress may, at some future time, manage to overcome the deficits while retaining the benefits. (3) Some multilocus DNA systems work well beyond the species on which they have been developed, which is due to the fact that the target sequences of many multilocus DNA probes are both conserved and variable throughout the plant and animal kingdoms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jeffreys AJ, Wilson V, Thein SL (1985) Hypervariable “minisatellite” regions in human DNA. Nature 314: 67–73

    Article  PubMed  CAS  Google Scholar 

  2. Jeffreys AJ, Wilson V, Thein SL (1985) Individual-specific “fingerprints” of human DNA. Nature 316: 76–79

    Article  PubMed  CAS  Google Scholar 

  3. Ali S, Müller CR, Epplen JT (1986) DNA fingerprinting human genomes by oligonucleotide probes specific for simple repetitive DNA sequences. Hum Genet 74: 239–243

    Article  PubMed  CAS  Google Scholar 

  4. Owerbach D, Aagaard L (1984) Analysis of a 1963-bp polymorphic region flanking the human insulin gene. Gene 32: 475–479

    Article  PubMed  CAS  Google Scholar 

  5. Jeffreys AJ, MacLeod A, Tamaki K, Neil DL, Monckton DG (1991) Minisatellite repeat coding as a digital approach to DNA typing. Nature 354: 204–209

    Article  PubMed  CAS  Google Scholar 

  6. Krawczak M, Schmidtke J (1998) DNA Fingerprinting 2nd ed. Bios Publishers, Oxford

    Google Scholar 

  7. Vassart G, Georges M, Monsieur R, Brocas H, Lequarre AS, Christophe D (1987) A sequence in M13 phage detects hypervariable minisatellites in human and animal DNA. Science 235: 683–684

    Article  PubMed  CAS  Google Scholar 

  8. Fowler SJ, Gill P, Werret DJ, Higgs DR (1988) Individual specific DNA fingerprints from a hypervariable region probe: alpha-globin 3’HVR. Hum Genet 79: 142–146

    Article  PubMed  CAS  Google Scholar 

  9. Pena SDJ, Macedo AM, Braga VMM, Rumjanek FD, Simpson AJ (1990) F10, the gene for the glycine-rich major egshell protein of Schistosoma mansoni recognizes a family of hypervariable minisatellites in the human genome. Nucleic Acids Res 18:7466

    Article  PubMed  CAS  Google Scholar 

  10. Georges M, Cochaux P, Lequarre AS, Young MW, Vassart G (1987) DNA fingerprinting in man using a mouse probe related to part of the Drosophila “Per” gene. Nucleic Acids Res 15: 7193

    Article  PubMed  CAS  Google Scholar 

  11. Singh L, Purdom IF, Jones KW (1981) Conserved sex-chromosome-associated nucleotide sequences in eukaryotes. Cold Spring Harbor Symp Quant Biol 45: 805–814

    Article  PubMed  CAS  Google Scholar 

  12. Epplen JT, McCarrey JR, Sutou S, Ohno S (1982) Base sequence of a cloned snake W-chromosome DNA fragment and identification of a male-specific putative mRNA in the mouse. Proc Natl Acad Sci USA 79: 3798–3802

    Article  PubMed  CAS  Google Scholar 

  13. Schäfer R, Zischler H, Birsner U, Becker A, Epplen JT (1988) Optimized oligonucleotide probes for DNA fingerprinting. Electrophoresis 9: 369–374

    Article  PubMed  Google Scholar 

  14. Krawczak M, Böhm I, Nürnberg P, Hampe J, Hundrieser J, Pöche H, Peters C, Slomski R, Kwiatkowska J, Nagy M et al (1993) Paternity testing with oligonucleotide multilocus probe (CAQs/fGTQs: a multicenter study. Forens Sci Int 59: 101–117

    Article  CAS  Google Scholar 

  15. Papiha SS, Sertedaki A (1995) Oligonucleotide (CAC)5 fingerprinting: validity and reliability in paternity testing. Electrophoresis 16:1624–1626

    Article  PubMed  CAS  Google Scholar 

  16. Armour JAL, Vergnaud G, Crosier M, Jeffreys AJ (1992) Isolation of human minisatellite loci detected by synthetic tandem repeat probes: direct comparison with cloned DNA fingerprinting probes. Hum Mol Genet 1: 319–323

    Article  PubMed  CAS  Google Scholar 

  17. Jeffreys AJ, Turner M, Debenham P (1991) The efficiency of multilocus DNA fingerprint probes for individualization and establishment of family relationships, determined from extensive casework. Am J Hum Genet 48: 824–840

    PubMed  CAS  Google Scholar 

  18. Jeffreys AJ, Brookfield JF, Semeonoff R (1985) Positive identification of an immigration test-case using human DNA fingerprints. Nature 317: 818–819

    Article  PubMed  CAS  Google Scholar 

  19. Gill P, Jeffreys AJ, Werrett DJ (1985) Forensic application of DNA “fingerprints”. Nature 318: 577–579

    Article  PubMed  CAS  Google Scholar 

  20. Socie G, Landman J, Gluckman E, Devergie A, Raynal B, Esperou-Bourdeau H, Brison O (1992) Short-term study of chimaerism after bone marrow transplantation for severe aplastic anaemia. Br J Haematol 80: 391–398

    Article  PubMed  CAS  Google Scholar 

  21. Stacey GN, Bolton BJ, Morgan D, Clark SA, Doyle A (1992) Multilocus DNA fingerprint analysis of cell banks: stability studies and culture identification in human B-lymphoblastoid and mammalian cell lines. Cytotechnology 8:13–20

    Article  PubMed  CAS  Google Scholar 

  22. Speth C, Epplen JT, Oberbaumer I (1991) DNA fingerprinting with oligonucleotides can differntiate cell lines derived from the same tumor. In Vitro Cell Dev Biol 27A: 646–650

    Article  PubMed  CAS  Google Scholar 

  23. Dolf G, Glowatzki ML, Gaillard C (1991) Searching for genetic markers for hereditary diseases in cattle by means of DNA fingerprinting. Electrophoresis 12: 109–112

    Article  PubMed  CAS  Google Scholar 

  24. Weising K, Ramser J, Kaemmer D, Kahl G (1994) Multilocus DNA fingerprinting and genetic relatedness in plants: a case study with banana and tomato. In: B Schierwater, B Streit, GP Wagner, R De-Salle (eds): Molecular ecology and evolution: approaches and applications. Birkhäuser, Basel, 45–59

    Google Scholar 

  25. Berard J, Nürnberg P, Epplen JT, Schmidtke J (1994) Alternative reproductive tactics and reproductive success in male rhesus macaques. Behaviour 129:177–201

    Article  Google Scholar 

  26. Nürnberg P, Roewer L, Neitzel H, Sperling K, Pöpped A, Hundrieser J, Pöche H, Epplen C, Zischler H, Epplen JT (1989) DNA fingerprinting with the oligonucleotide probe (CAC)5/(GTG)5: somatic stability and germline mutations. Hum Genet 84: 75–78

    Article  PubMed  Google Scholar 

  27. Krawczak M, Bockel B (1991) DNA-fingerprinting: a short note on mutation rates. Hum Genet 87: 632

    Article  PubMed  CAS  Google Scholar 

  28. Krawczak M (1992) DNA-fingerprinting and mutation rates: reply to letter by Ritter. Hum Genet 89: 363–364

    Google Scholar 

  29. Nürnberg P, Sauermann U, Kayser M, Lanfer C, Manz E, Widdig A, Berard J, Bercovitch FB, Kessler M, Schmidtke J et al (1998): Paternity assessment in rhesus macaques (Macaca mulatto): multilocus DNA fingerprinting and PCR marker typing. Am J Primatol 44:1–18

    Article  PubMed  Google Scholar 

  30. Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R, Myers RH (1997) Effects of age, sex and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. JAMA 278: 1349–1356

    Article  PubMed  CAS  Google Scholar 

  31. Rabinow P (1992) Galton’s regret: of types and individuals. In: PR Billings (ed): DNA on trial. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 5–18

    Google Scholar 

  32. Zischler H, Kammerbauer C, Studer R, Grzeschik KH, Epplen JT (1992) Dissecting (CAC)5/(GTG)5 multilocus fingerprints from man into individual locus-specific, hypervariable components. Genomics 13:983–990

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Birkhäuser Verlag

About this chapter

Cite this chapter

Schmidtke, J. (1999). Multilocus DNA Fingerprinting. In: Epplen, J.T., Lubjuhn, T. (eds) DNA Profiling and DNA Fingerprinting. Methods and Tools in Biosciences and Medicine. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7582-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7582-0_5

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-6018-4

  • Online ISBN: 978-3-0348-7582-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics