Skip to main content

The Use of Imperfect Microsatellites for DNA Fingerprinting and Population Genetics

  • Chapter

Part of the book series: Methods and Tools in Biosciences and Medicine ((MTBM))

Abstract

Since their introduction about 10 years ago, microsatellites have been demonstrated to be a powerful tool for genetic analysis of natural populations [1]. Microsatellites are easy to isolate, highly polymorphic and many individuals can be characterized for a number of loci.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schlötterer C, Pemberton J (1998) The use of microsatellites for genetic analysis of natural populations — a critical review. In: R DeSalle, B Schierwater (eds): Molecular approaches to individuals, populations and species. Birkhäuser; Basel, 71–86

    Google Scholar 

  2. Schlötterer C, Tautz D (1992) Slippage synthesis of simple sequence DNA. Nucleic Acids Res 20: 211–215

    Article  PubMed  Google Scholar 

  3. Tautz D, Schlötterer C (1994) Simple Sequences. Curr Op Gen Dev 4: 832–837

    Article  CAS  Google Scholar 

  4. Eisen JA (1999) Mechanistic explanations for variation in microsatellite stability within and between species. In: D Goldstein, C Schlötterer (eds): Microsatellites: evolution and applications, Oxford University Press; in press

    Google Scholar 

  5. Moran PAP (1975) Wandering distributions and electrophoretic profile. Theoretical Population Biology 8: 318–330

    Article  PubMed  CAS  Google Scholar 

  6. Goldstein DB, Ruiz Lineares A, Cavalli-Sforza LL, Feldman MW (1995) Genetic absolute dating based on microsatellites and the origin of modern humans. Proc Natl Acad Sci USA 92: 6723–6727

    Article  PubMed  CAS  Google Scholar 

  7. Di Rienzo A, Peterson AC, Garza JC, Valdes AM, Siatkin M, Freimer NB (1994) Mutational processes of simplesequence repeat loci in human populations. Proc Natl Acad Sci USA 91: 3166–3170

    Article  PubMed  Google Scholar 

  8. Garza JC, Siatkin M, Freimer NB (1995) Microsatellite allele frequencies in humans and chimpanzees with implications for constraints on allele size. Mol Biol Evol 12: 594–603

    PubMed  CAS  Google Scholar 

  9. Goldstein DB, Pollock DD (1997) Launching microsatellites: a review of mutation processes and methods of phylogenetic inference. J Hered 88: 335–342

    Article  PubMed  CAS  Google Scholar 

  10. Chakraborty R, Kimmel M, Stivers DN, Davison LJ, Deka R (1997) Relative mutation rates at di-, tri- and tetranucleotide microsatellite loci. Proc Natl Acad Sci USA 94: 1041–1046

    Article  PubMed  CAS  Google Scholar 

  11. Harr B, Zangerl B, Brem G, Schlötterer C (1998) Conservation of locus specific microsatellite variability across species: a comparison of two Drosophila sibling species D. melanogaster and D. simulans. Mol Biol Evol 15: 176–184

    Article  PubMed  CAS  Google Scholar 

  12. Wierdl M, Dominska M, Petes TD (1997) Microsatellite instability in yeast: dependence on the length of the microsatellite. Genetics 146: 769–779

    PubMed  CAS  Google Scholar 

  13. Jin L, Macaubas C, Hallmayer J, Kimura A, Mignot E (1996) Mutation rate varies among alleles at a microsatellite locus: phylogenetic evidence. Proc Natl Acad Sci USA 93: 15285–15288

    Article  PubMed  CAS  Google Scholar 

  14. Tautz D, Trick M, Dover GA (1986) Cryptic simplicity in DNA is a major source of genetic variation. Nature 322: 652–656

    Article  PubMed  CAS  Google Scholar 

  15. Hancock J (1996) Simple sequences in a “minimal” genome. Nature Genet 14: 14–15

    Article  PubMed  CAS  Google Scholar 

  16. Schlötterer C (1998) Are microsatellites really simple sequences? Curr Biol 8: R132-R134

    Article  PubMed  Google Scholar 

  17. Viard F, Franck P, Dubois MP (1998) Variation of microsatellite size homoplasy across electromorphs, loci and populations in three invertebrate species. J Mol Evol; 42–51

    Google Scholar 

  18. Jacobson DP, Schmeling P, Sommer SS (1993) Characterization of the patterns of polymorphism in a “cryptic repeat” reveals a novel type of hypervariable sequence. Am J Hum Genet 53: 443–450

    PubMed  CAS  Google Scholar 

  19. Sommer SS, Tillotson VL, Vielhaber EL, Ketterling RP, Dutton CM (1994) “Cryptic” dinucleotide polymorphism in the 3′ region of the factor IX gene shows substantial variation among different populations. Hum Genet 93: 357–358

    Article  PubMed  CAS  Google Scholar 

  20. Bowcock AM, Ruiz-Lineares A, Tonfohrde J, Minch E, Kidd JR, Cavalli-Sforza LL (1994) High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368: 455–457

    Article  PubMed  CAS  Google Scholar 

  21. Citri Y, Colot HV, Jacquier AC, Yu Q, Hall JC, Baltimore D, Rosbash M (1987) A family of unusual spliced biologically active transcripts encoded by a Drosophila melanogaster clock gene. Nature 326: 42–47

    Article  PubMed  CAS  Google Scholar 

  22. Rosato E, Peixoto AA, Barbujani G, Costa R, Kyriacou CP (1994) Molecular polymorphism in the period gene of Drosophila simulans. Genetics 138: 693–707

    PubMed  CAS  Google Scholar 

  23. Schlötterer C (1995) Temperature-gradient gel electrophoresis as a screening tool for polymorphisms in multigene families. Electrophoresis 16: 722–728

    Article  PubMed  Google Scholar 

  24. Underhill PA, Jin L, Lin AA, Mehdi SQ, Jenkins T, Vollrath D, Davis RW, Cavalli-Sforza LL, Oefner PJ (1997) Detection of numerous Y chromosome biallelic polymorphism by denaturing high-performance liquid chromatography. Genome Res 7: 996–1005

    PubMed  CAS  Google Scholar 

  25. Angers B, Bernatchez L (1997) Complex evolution of a salmonid microsatellite locus and its consequences in inferring allelic divergence from size information. Mol Biol Evol 14: 230–238

    Article  PubMed  CAS  Google Scholar 

  26. Estoup A, Tailliez C, Cornuet JM, Solignac M (1995) Size homoplasy and mutational processes of interrupted microsatellites in two bee species, Apis mellifera and Bombus terrestris (Apidae). Mol Biol Evol 12: 1074–1084

    PubMed  CAS  Google Scholar 

  27. Schlötterer, C, Ritter, R, Harr, B and Brem, G (1998) High mutation rates of long microsatellite alleles in Drosophilia melangoaster provide evidence for allele specific mutation rates. Molecular Biology and Evolution 15, 1269–1274

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Birkhäuser Verlag

About this chapter

Cite this chapter

Schlötterer, C., Zangerl, B. (1999). The Use of Imperfect Microsatellites for DNA Fingerprinting and Population Genetics. In: Epplen, J.T., Lubjuhn, T. (eds) DNA Profiling and DNA Fingerprinting. Methods and Tools in Biosciences and Medicine. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7582-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7582-0_10

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-6018-4

  • Online ISBN: 978-3-0348-7582-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics