Skip to main content

Angiotensin converting enzyme inhibition in the microcirculation

  • Chapter
ACE Inhibitors

Part of the book series: Milestones in Drug Therapy MDT ((MDT))

  • 272 Accesses

Abstract

Microcirculation networks represent highly specialized segments of the general circulation in terms of structure and function. Definition of these segments is critical to establish the volume of blood contained, the endothelial surface exposed to the neighbouring fluid compartments, including the interstitial and cellular compartments, the lumen diameter and wall thickness of each segment. In fact, these structural characteristics determine a large part of the physiological functions of the vasculature, from hydrostatic pressure development to fluid and nutrient exchanges in peripheral organs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ganong WF (1997) Dynamics of blood and lymph flow. In: WF Ganong (ed.): Review of Medical Physiology. Appleton and Lange, Stamford, 536–552

    Google Scholar 

  2. Reed RK, Laurent UBG (1992) Turnover of hyaluronan in the microcirculation. Amer Rev Respir Dis 146: S37 - S39

    CAS  Google Scholar 

  3. Kiani MF, Pries AR, Hsu LL, Sarelius IH, Cokelet GR (1994) Fluctuations of microvascular blood flow parameters caused by hemodynamic mechanisms. Amer J Physiol 266: H1822–1828

    PubMed  CAS  Google Scholar 

  4. Davies PF (1995) Flow-mediated endothelial mechanotransduction. Physiol Rev 75: 519–604

    PubMed  CAS  Google Scholar 

  5. Simionescu N (1983) Cellular aspects of transcapillary exchange. Physiol Rev 63: 1536–1640

    PubMed  CAS  Google Scholar 

  6. Soulis-Liparota T, Cooper M, Papazoglou D, Clarke B, Jerums G (1991) Retardation by aminoguanidine of developement of albuminuria, mesangial expansion and tissue fluorescence in streptozotocin-induced diabetic rat. Diabetes 40: 1328–1334

    Article  PubMed  CAS  Google Scholar 

  7. Chakir M, Plante GE (1996) Endothelial cell dysfunction in diabetes mellitus. Prostagland Leukotriene Essent Fatty Acid 54: 45–51

    Article  CAS  Google Scholar 

  8. Click RL, Gilmore JP, Joyner WL (1977) Direct demonstration of alterations in the microcirculation of the hamster during and following renal hypertension. Cire Res 41: 461–467

    CAS  Google Scholar 

  9. Bohlen HG (1983) Intestinal microvascular adaptation during maturation of spontaneously hypertensive rats. Hypertension 5: 739–745

    Article  PubMed  CAS  Google Scholar 

  10. Engelson ET, Schmid-Sconbein GW, Zweifach BW (1986) The microvasculature in skeletal muscle: II. Arteriolar network anatomy in normotensive and spontaneously hypertensive rats. Microvasc Res 31: 356–374

    Article  PubMed  CAS  Google Scholar 

  11. Blantz RC, Konnen KS, Tucker BJ (1976) Angiotensin-II effects upon glomerular microcirculation and ultrafiltration coefficient of the rat. J Clin Invest 57: 419–434

    Article  PubMed  CAS  Google Scholar 

  12. Bohlen HG (1989) The microcirculation in hypertension. J Hypertension 7 (suppl 4): 5117–5124

    Google Scholar 

  13. Lehoux S, Plante GE, Sirois MG, Sirois P, D’Orléans-Juste P (1992) Phosphoramidon blocks bigendothelin-1 but not endothelin- 1 enhancement of vascular permeability in the rat. Brit J Pharmacol 107: 996–1000

    CAS  Google Scholar 

  14. Patterson CE, Rhoades RA, Garcia JGN (1992) Evans blue dye as a marker of albumin clearance in cultured endothelial monolayer and isolated lung. JAppl Physiol 72: 865–873

    CAS  Google Scholar 

  15. Lortie M, Gauthier B, Plante GE (1992) Renal reperfusion injury: sequential changes in function and regional albumin extravasation. Microvasc Res 48: 295–302

    Article  Google Scholar 

  16. Plante GE, Dion D, Labrecque G (2001) Seasonal variations in endothelial permeability to albumin in the normal rat. Can J Physiol Pharmacol; in press

    Google Scholar 

  17. Larouche A, Lehoux S, Cadieux A, Sirois P, Plante GE (1998) Perméabilité endothéliale à l’albumine de la paroi aortique. Médecine Sci 14 (suppl 1): 23

    Google Scholar 

  18. Jung F, Wappler M. Nüttgens HP, Kiesewetter H, Wolf S, Müller G (1987) Video capillary microscopy: determination of geometrical and dynamic parameters. Biomed Tech 32: 204–213

    Article  CAS  Google Scholar 

  19. Greene AS (1998) Life and death in the microcirculation: a role for angiotensin-II. Microcirculation 5: 101–107

    PubMed  CAS  Google Scholar 

  20. Li JS, Schiffrin EL (1996) Effect of calcium channel blockade or angiotensin-converting enzyme inhibition on structure of coronary, renal, and other small arteries in spontaneously hypertensive rats. J Cardiovasc Pharmacol 28: 68–74

    Article  PubMed  CAS  Google Scholar 

  21. Scotland R, Valiance P, Ahluwalia A (1999) Endothelin alters the reactivity of vasa vasorum: mechanisms and implications for conduit vessel physiology and pathophysiology. Brit J Pharmacol 128: 1229–1234

    Article  CAS  Google Scholar 

  22. Shao XP, Chainey A, Plante GE (2000) Pharmacologie des récepteurs de l’angiotensine-II dans la microcirculation de l’aorte thoracique. Médecine Sci 16: 12

    Google Scholar 

  23. Rene P, Simonson MS, Dunn MJ (1989) Physiology of the mesangial cell. Physiol Rev 69: 1347–1401

    Google Scholar 

  24. Sorbi D, Fadly M, Hicks R, Alexander S, Arbeit L (1993) Captopril inhibits the 72 kDa and 92 kDa matrix metalloproteinases. Kidney Ira 44: 1266–1272

    Article  CAS  Google Scholar 

  25. Simon G, Altman S (1992) Subpressor angiotensin II is a bifunctional growth factor of vascular muscle in rats. J Hypertension 10: 1165–1171

    Article  CAS  Google Scholar 

  26. Bussien JP, d’Amore TF, Perret L (1986) Single and repeated dosing of the converting enzyme inhibitor perindopril to normal subjects. Clin Pharmacol Ther 39: 554–558

    Article  PubMed  CAS  Google Scholar 

  27. Unger T, Moursi M, Ganten D, Hermann K, Lang RE (1986) Antihypertensive action of the converting enzyme inhibitor perindopril (S9490–3) in spontaneously hypertensive rat: comparison with enalapril (MK421) and ramipril (HOE498). J Cardiovasc Pharmacol 8: 276–285

    Article  PubMed  CAS  Google Scholar 

  28. Vacek L, Braveny P (1978) Effect of angiotensin-II on blood pressure and microvascular beds in mesentery, skin, and skeletal muscle of the rat. Microvasc Res 16: 43–50

    Article  PubMed  CAS  Google Scholar 

  29. Meininger GA, Harris PD, Joshua IG (1984) Distributions of microvascular pressure in skeletal muscle of one-kidney, one-clip, two-kidney, one-clip and deoxycorticosterone-salt hypertensive rats. Hypertension 6: 27–34

    Article  PubMed  CAS  Google Scholar 

  30. Bohlen HG (1989) The microcirculation in hypertension. J Hypertension 7 (suppl 4): 5117–5124

    Google Scholar 

  31. Myers TO, Joyner WL, Gilmore FP (1988) Angiotensin reactivity in the cheek pouch of the renovascular hypertensive hamster. Hypertension 12: 373–379

    Article  PubMed  CAS  Google Scholar 

  32. Vicaut E, Hou X (1993) Arteriolar constriction and local renin-angiotensin In rat microcirculation. Hypertension 21: 491–497

    Article  PubMed  CAS  Google Scholar 

  33. Mohama RE, Joyner WL, Gilmore JP (1984) Comparative reactivity of hamster cheek pouch microvessels to arginine vasopressin and angiotensin H. Microcirc Endothel Lymphat 1: 397–413

    CAS  Google Scholar 

  34. Hutchins PM, Darnell AE (1974) Observation of a decrease in number of small arterioles in spontaneously hypertensive rat. Circ Res 34/35 (suppl 1 ): 161–165

    Google Scholar 

  35. Le Noble J, Tangelder GJ, Slaff DW, VanEssen H, Reneman RS, Struyker-Boudier HAJ (1990) A functional morphometric study of the cremaster muscle microcirculation in young spontaneously hypertensive rats. J Hypertension 8: 741–748

    Article  Google Scholar 

  36. Bohlen HG (1979)Arteriolar closure mediated by hyperresponsiveness to norepinephrine in hypertensive rats. Amer J Physiol 236: H157–H164

    PubMed  CAS  Google Scholar 

  37. Hashimoto H, Prewitt RL, Efaw CW (1987) Alterations in the microvasculature of one-kidney, one-clip hypertensive rats. Amer J Physiol 253: H933 — H940

    PubMed  CAS  Google Scholar 

  38. Hernandez I, Cowley AW, Lombard JH, Greene AS (1992) Salt intake and angiotensin II alter microvessel density in the cremaster muscle of normal rats. Amer J Physiol 263: H664 — H667

    PubMed  CAS  Google Scholar 

  39. Plante GE, Bissonnette M, Sirois MG, Regoli D, Sirois P (1992) Renal permeability alteration precedes hypertension and involves bradykinin in the spontaneously hypertensive rat. J Clin Invest 89: 2030–2034

    Article  PubMed  CAS  Google Scholar 

  40. Comper WD, Laurent TC (1978) Physiological function of connective tissue polysaccharides. Physiol Rev 58: 255–315

    PubMed  CAS  Google Scholar 

  41. Plante GE, Chakir M, Lehoux S, Lortie M (1995) Disorders of body fluid balance: a new look into the mechanisms of disease. Can J Cardiol 11: 788–802

    PubMed  CAS  Google Scholar 

  42. Gottlieb AI, Langile BL, Wong MK, Kim DW (1991) Structure and function of the endothelial cytoskeleton. Lab Invest 65: 123–137

    PubMed  CAS  Google Scholar 

  43. Lehoux S, Plante GE (2001) Key role of cytoskeletal and extracellular matrix proteins in the maintenance of capillary barrier function in vivo. Circ Res; in press

    Google Scholar 

  44. Lehoux S, Plante GE (1994) Contrasting effects of various antihypertensives on capillary permeability in the normal rat. J Amer Soc Nephrol 5: 348

    Google Scholar 

  45. Lehoux S, Plante GE (1996) Antihypertensive drugs and endothelial cell function. Prostagland Leukotriene Essent Fatty Acid 54: 65–70

    Article  CAS  Google Scholar 

  46. Lehoux S, Plante GE (2001) Heterogeneity of capillary permeability response to antihypertensive drug regimens in the spontaneously hypertensive rat. Microvasc Res; in press

    Google Scholar 

  47. Plante GE, Alfred J, Chakir M (1999) The blood vessel, linchpin of diabetic lesions. Metabolism 48: 406–409

    Article  PubMed  CAS  Google Scholar 

  48. Heistad DD, Marcus ML, Law EG, Armstrong ML, Ehrhardy JC, Abhoud FM (1978) Regulation of blood flow to the aortic media in dogs. J Clin Invest 62: 133–139

    Article  PubMed  CAS  Google Scholar 

  49. Bemin J, Corman B, Merval R, Tedgui A (1993) Age-related changes in endothelial permeability and distribution volume of albumin in rat aorta. Amer J Physiol 264: H679 — H685

    Google Scholar 

  50. Scotland R, Vallance P, Ahluwalia A (1999) Endothelin alters the reactivity of vasa vasorum: mechanisms and implications for conduit vessel physiology and pathophysiology. Brit J Pharmacol 128: 1229–1234

    Article  CAS  Google Scholar 

  51. Shao X, Chainey A, Plante GE (2001) Pharmacologie des récepteurs de l’angiotensine-II dans la microcirculation de l’aorte thoracique. Médecine Sci 16 (suppl I): 34

    Google Scholar 

  52. Shao X, Chainey A, Plante GE (2001) Bradykinin B1 and B2 receptor-mediated vaso-active effects in vasa vasorum of rabbit thoracic aorta in vitro. Brit J Pharmacol; in press

    Google Scholar 

  53. Lehoux S, Larouche A, Cadieux A, Plante GE (1995) Perméabilité endothéliale de l’aorte du rat spontanément hypertendu: effets de divers antihypertenseurs. Arch Mal Coeur Vaisseaux 88: 62

    Google Scholar 

  54. Plante GE, Lehoux S, Larouche A, Brière N, Cadieux A (2001) Antihypertensive agents affect endothelial function in the thoracic aorta: pathophysiological significance. Can J Physiol Pharmacol; in press

    Google Scholar 

  55. Tooke JE (1995) Microvascular function in human diabetes: a physiological perspective. Diabetes 44: 721–726

    Article  PubMed  CAS  Google Scholar 

  56. Chakir M, Plante GE (1996) Endothelial cell dysfunction in diabetes mellitus. Prostagland Leukotriene Essent Fatty Acid 54: 45–51

    Article  CAS  Google Scholar 

  57. Mathiesen ER, Hommel E, Hansen HP (1997) Preservation of normal GFR with long-term captopril treatment in normotensive IDDM patients with microalbuminuria. J Amer Soc Nephrol 8: 115A

    Google Scholar 

  58. Haak E, Haak T, Kusterer K, Reschke B, Faust H, Usadel KH (1998) Microcirculation in hyperglycemic patients with IDDM without diabetic complications-effect of low-dose angiotensin-converting enzyme inhibition. Exp Clin Endocrinol Diabetes 106: 45–50

    Article  PubMed  CAS  Google Scholar 

  59. Lehoux S, Sirois MG, Sirois P, Plante GE (1994) Acute and chronic diuretic treatment selectively affects vascular permeability in the unanesthetized normal rat. J Pharmacol Exp Ther 269: 1094–1099

    PubMed  CAS  Google Scholar 

  60. Harris P (1987) Congestive heart failure: central role of the arterial blood pressure. Brit Heart J 59: 190–203

    Article  Google Scholar 

  61. Galatius S, Wroblewski H, Sorensen V, Haunso S, Norgaard T, Kastrup J (1999) Reversal of peripheral microvascular dysfunction during long-term treatment with the angiotensin-converting enzyme inhibitor fosinopril in congestive heart failure. J Cardiac Fail 5: 17–24

    Article  CAS  Google Scholar 

  62. Burnett JC (1999) Vasopeptidase inhibition: a new concept in blood pressure management. J Hypertension 17: S37 - S43

    CAS  Google Scholar 

  63. Décarie A, Raymond P, Gervais N, Couture R, Adam A (1996) Serum interspecies differences in metabolic pathways of bradykinin and [desArg9]BK: influence of enalaprilat. Amer J Physiol 270: H1340 - H1347

    Google Scholar 

  64. Espiner EA (1994) Physiology of natriuretic peptides. J Int Med 235: 527–541

    Article  CAS  Google Scholar 

  65. Plante GE (2000) Traitement sans bogue de l’hypertension artérielle au nouveau millénaire. Nouvelle pharmacologie du système rénine angiotensine. Médecine Sci 16 (suppl 1): 14–17

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Birkhäuser Verlag/Switzerland

About this chapter

Cite this chapter

Plante, G.E., Nawar, T. (2001). Angiotensin converting enzyme inhibition in the microcirculation. In: D’Orléans-Juste, P., Plante, G.E. (eds) ACE Inhibitors. Milestones in Drug Therapy MDT. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7579-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7579-0_7

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-7581-3

  • Online ISBN: 978-3-0348-7579-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics