Skip to main content

Acetylsalicylsäure im Vergleich zu anderen Thrombozytenfunktionshemmern — Wirkungsmechanismen

  • Chapter
  • 150 Accesses

Zusammenfassung

Acetylsalicylsäure ist der „Gold-Standard“ zur Thrombozytenhemmung für die Verhinderung bzw. Prognoseverbesserung akuter arterieller thrombotischer Ereignisse. Die Substanz wird der kleinen Gruppe von Medikamenten zugerechnet, deren lebensverlängernde Wirkung in der sekundären und — weniger anerkannt — auch in der primären Gefäßprävention bewiesen ist. Daher fällt es schwer, das Prinzip der Cyclooxygenasehemmung gegen andere, neuere Konzepte der Thrombozytenhemmung zu profilieren. Thrombozytenhemmung kann nicht mehr ausschließlich als antithrombogenes Prinzip verstanden werden. Vielmehr sind Thrombozyten durch die von ihnen gebildeten bzw. aus dem Megakaryozytenkompartiment transportierten und bei Aktivierung auch ohne Thrombusbildung sezernierten Mediatoren an der Steuerung des lokalen Vasotonus, dem lokalen Gefaßwandmodeling sowie der Ko-Aktivierung anderer korpuskularer Blutbestandteile beteiligt. Die Bewertung des Effektes von Thrombozytenfunktionshemmern auf den Verlauf degenerativer Gefäßkrankheiten erfordert daher eine differenziertere Betrachtung. Unter diesen molekularen Aspekten der Thrombozytenaktivierung muß bei der Anwendung von Acetylsalicylsäure zwischen akuten und langfristigen, aber insbesondere auch zwischen direkten und indirekten Wirkungen unterschieden werden. Neben der substanzimmanenten Reduktion des Wirkspektrums auf den Thromboxansignalweg werden so Wirkungsdefizite bei kurzfristiger Anwendung, wie andererseits aber auch neue Effekte im Gesamtspektrum der Thrombozytenfunktionen, insbesondere die mögliche Beeinflußbarkeit der Leukozyteninteraktion, sichtbar. Zu den neueren Thrombozytenfunktionshemmern gehören Ticlopidin, Prostacyclinmimetika, insbesondere aber auch antiadhäsive Substanzen wie Fibrinogenrezeptorblocker, die die molekulare Quervernetzung, d.h. die funktionelle Endstrecke aktivierter Thrombozyten, blockieren. Diese hochpotenten Substanzen werden das breite Konzept der Cyclooxygenasehemmung nicht ablösen. Vielmehr bestätigen die heute verfügbaren Daten, daß wie mit Fibrinolytika auch, eine Kombination antithrombozytärer Konzepte zu einer Verbesserung der gewünschten klinischen Effektivität führen kann.

Summary

Acetylsalicylic acid is the „golden standard“ to reduce the incidence and to improve the outcome of acute thrombotic events in arteries. Acetylsalicylic acid belongs to the small group of drugs with established beneficial effects in life-expectancy in secondary prevention. Similar, though less well established conclusions have also been drawn for primary prevention. This makes it difficult to design other, eventually more contemporary concepts of drug-induced inhibition of platelet function versus the concept of inhibition of cyclooxygenase. Inhibition of platelet function is more than inhibition of thrombogenesis and also involves local vasomotor control, vascular remodeling and activation of additional blood cells, induced by platelet-derived mediators. The evaluation of efficacy of inhibitors of platelet function, therefore, has also to consider these facts.

This is also true for acetylsalicylic acid where short-term effects have to be separated from long-term effects as well as direct actions from indirect actions. The action profile is focussed on the thromboxane signal and, therefore, limited in short-term use. On the other hand, any change in cyclooxygenase metabolites by acetylsalicylic acid may allow for additional effects, such as modulation of white cell function. More recently developed inhibitors of platelet function involve ticlopidine, prostacyclin mimetics and antiadhesive compounds, such as fibrinogen receptor antagonists. Fibrinogen receptor antagonists block platelet aggregate formation, i.e. the final common pathway of activated platelets. These highly potent compounds will not replace the more general concept of cyclooxygenase inhibition. However, available data suggest that, similar to fibrinolytics, a combination of different antiplatelet strategies may result in an improved clinical efficacy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Fuster V, Badimon L, Badimon JJ, Chesebro J. Mechanisms of disease: The pathogenesis of coronary artery disease and the acute coronary syndromes (first of two parts). N Engl J Med 1992;326:13–19.

    Google Scholar 

  2. Fuster V, Badimon L, Badimon JJ, Chesebro J. Mechanisms of disease: The pathogenesis of coronary artery disease and the acute coronary syndromes (second of two parts). N Engl J Med 1992; 326:7–12.

    Google Scholar 

  3. Furie B, Furie B. Molecular and cellular biology of blood coagulation. N Engl J Med 1992;326:1–6.

    Article  Google Scholar 

  4. Palabricia T, Lobb R, Furie BC, Aronovitz M, Benajamin C, Yeng-Ming H, Sajer SA, Furie B. Leukocyte accumulation promoting fibrin deposition is mediated in vivo by P-selectin on adherent platelets. Nature 1992; 359:848–851.

    Article  Google Scholar 

  5. Buttrum SM, Hatton R, Nash GB. Selectin mediated rolling of neutrophils on immobilized platelets. Blood 1993; 82:1165–1174.

    PubMed  CAS  Google Scholar 

  6. Tschoepe D. Adhesion molecules influencing atherosclerosis. Diab Res Clin Pract 1996; 30 (suppl.l): 19–24.

    Article  Google Scholar 

  7. Yao SK, Ober JC, Krishnaswami A, Ferguson JJ, Anderson HV, Golino P, Buja LM, Willerson JT. Endogeneous nitric oxide protects against platelet aggregation and cyclic flow variations in stenosed and endothelium-injured arteries. Circulation 1992; 86:1302–1309.

    Article  PubMed  CAS  Google Scholar 

  8. Sevitt S. Platelets and foam cells in the evolution of atherosclerosis. Histological and immunohistological studies of human lesions. Atherosclerosis 1986; 61:107–115.

    Article  PubMed  CAS  Google Scholar 

  9. Curtiss LK, Black AS, Takagi Y, Plow E. New mechanism for foam cell generation in atherosclerotic lesions. J Clin Invest 1987; 80:367–373.

    Article  PubMed  CAS  Google Scholar 

  10. Van Zanten GH, De Graaf S, Slootweg PJ, Heijnen HFG, Connolly TM, De Groot PG, Sixma JJ. Increased platelet deposition on atherosclerotic coronary arteries. J Clin Invest 1994;93:615–632.

    Article  PubMed  Google Scholar 

  11. Malle E, Sattler W. Platelets and the lipoproteins: Native, modified and platelet modified lipoproteins. Platelets 1994; 5:70–83.

    Article  PubMed  CAS  Google Scholar 

  12. Border WA, Noble NA. Mechanisms of disease: Transforming growth factor (Beta) in tissue fibrosis. N Engl J Med 1994; 331:1–8.

    Article  Google Scholar 

  13. Antiplatelet Trialists’ Collaboration: Collaborative overview of randomised trials of antiplatelet therapy- I: Prevention of death, myocardial infarction, and stroke by prolonged antiplatelet therapy in various categories of patients. Br Med J 1994; 308:81–106.

    Article  Google Scholar 

  14. Special Writing Group: Fuster V, Dyken ML, Vokonas PS, Hennekens C. Aspirin as therapeutic agent in cardiovascular disease. Circulation 1993; 87:659–675.

    Article  PubMed  CAS  Google Scholar 

  15. Dunbabin D, Sandercock P for the Antiplatelet Trialists’ Collaboration. Antiplatelet therapy in the treatment and prevention of vascular disease: Some clear answers, some new questions. Platelets 1994; 5:3–12.

    Article  PubMed  CAS  Google Scholar 

  16. Bellavance A for the Ticlopidine Aspirin Stroke Study Group. Efficacy of ticlopidine and aspirin for prevention of reversible cerebrovascular ischemic events. The Ticlopidine Aspirin Stroke Study. Stroke 1993; 24:1452–1457.

    Article  Google Scholar 

  17. FitzGerald GA. Ticlopidine in unstable angina. A more expensive aspirin? Circulation 1990; 82:296–298.

    Article  Google Scholar 

  18. Moore RS, Underwood MJ, Gershlick AH. Targeted antiplatelet therapy. Platelets 1994; 5:237–239.

    Article  Google Scholar 

  19. ISIS 2 (Second International Study of Infarct Survival) Collaborative Group. Randomised trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2. Lancet 1988; 13:349–360.

    Google Scholar 

  20. Basinski A, Naylor CD. Aspirin and fibrinolysis in acute myocardial infarction: Meta-analytic evidence for synergy. J Clin Epidemiol 1991; 10:1085–1096.

    Article  Google Scholar 

  21. Born GVR. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 1962; 194:927–929.

    Article  PubMed  CAS  Google Scholar 

  22. Philp, RB. In vitro tests of platelet function and platelet-inhibiting drugs. In: Methods of testing proposed antithrombotic drugs. Philp RB, editor. Boca Raton, Ann Arbor, London, Tokyo: CRC Press, 1981: 129–161.

    Google Scholar 

  23. Packham MA, Mustard JF. The role of platelets in the development and complications of athersclerosis. Sem Hematol 1986; 23:8–26.

    CAS  Google Scholar 

  24. Savage B, Shattil S, Ruggeri ZM. Modulation of platelet function through adhesion receptors. J Biol Chem 1992; 16:11300–11306.

    Google Scholar 

  25. Gisberts AN, Van Willigen G, Lapetina E, Akkerman JW. Regulation of platelet glycoprotein IIb/IIIa function via the thrombin receptor. Biochem J 1995; 309:613–620.

    Google Scholar 

  26. Froj movic MM, Mooney RF, Wong T. Dynamics of platelet glycoprotein IIb-IIIa receptor expression and fibrinogen binding. I. Quantal activation of platelet subpopulations varies with adenosine diphosphate concentration. Biophys J 1994; 67:2060–2068.

    Article  PubMed  CAS  Google Scholar 

  27. Lefkovits J, Plow E, Topol EJ. Platelet glycoprotein IIb/IIIa receptors in cardiovascular medicine. N Engl J Med 1995;323:1553–1559.

    Google Scholar 

  28. Haibrügge M, Walter U. The regulation of platelet function by protein kinases. In: Protein kinases in blood cell function. Huang CK, Sha’afi RI, editors. Boca Raton, Ann Arbor, London, Tokyo: CRC Press, 1993: 245–298.

    Google Scholar 

  29. Dhar A, Shukla AD. Tyrosine kinases in platelet signalling. Br J Haematol 1993; 84:1–7.

    Article  PubMed  CAS  Google Scholar 

  30. Abrams CS, Ellinson N, Budzynski AZ, Shattil SJ. Direct detection of activated platelets and platelet-derived microparticles in humans. Blood 1990; 75:128–138.

    PubMed  CAS  Google Scholar 

  31. Abrams CS, Shattil SJ. Immunological detection of activated platelets in clinical disorders. Thromb Haemost 1991; 65:467–473.

    PubMed  CAS  Google Scholar 

  32. Tschöpe D, Spangenberg P, Esser J, Schwippert B, Rosen P, Gries FA. Flow-cytometric detection of surface membrane alterations and concomitant changes in the cytoskeletal actin status of activated platelets. Cytometry 1990; 11:652–656.

    Article  Google Scholar 

  33. McEver RP. Selectins: Novel receptors that mediate leukocyte adhesion during inflammation. Thromb. Haemostas. 1991; 65: 223–228.

    CAS  Google Scholar 

  34. Lefer AM, Weyrich AS, Buerke M. Role of selectins, a new family of adhesion molecules, in ischemia-reperfusion injury. Cardiovasc Res 1994; 28:289–294.

    Article  PubMed  CAS  Google Scholar 

  35. Ma L, Raycron L, Asa D, Anderson DC, Geng JG. A Sialoglycoprotein from human leukocytes functions as a ligand for P-selectin. J Biol Chem 1994; 269:27739–27746.

    PubMed  CAS  Google Scholar 

  36. Asa D, Rayeron L, Ma L, Aeed P, Kayes PS, Elhammer AP, Geng JG. The P-selectin glycoprotein ligand functions as a common human leukocyte ligand for P- and E-selectins. J Biol Chem 1995; 270:11662–11670.

    Article  PubMed  CAS  Google Scholar 

  37. Vachino G, Chang XJ, Veldman G, Kumar R, Sako D, Fouser LA, Berndt MC, Cumming DA. P-selectin glycoprotein ligand-1 is the major counter-receptor for P-selectin on stimulated T-cells and is widely distributed in non-functional form on many lymphocytic cells. J Biol Chem 1995; 270:21966–21974.

    Article  PubMed  CAS  Google Scholar 

  38. Tschöpe D, Schwippert B. Düsseldorf III Assay: Bestimmung von Aktivierungs-markern auf Thrombozyten im Durchflußzytometer. In: Klinische Zytometrie. Schmitz G, Hrsg. München: Schattauer Verlag, 1994: 429–442.

    Google Scholar 

  39. Tschöpe D, Schwippert B. Flow cytometric measurement of intravascular platelet activation — a new concept to assess the risk of arterial thrombosis. Gynecol Endocrinol 1993;7(suppl):1–7.

    Google Scholar 

  40. Tschöpe D, Schwippert B, Raic I, Schmidt-Soltau C, Rösen P. Wirkung von Azetylsalizylsäure auf die intravasale Thrombozytenaktivierung bei Typ-I-Diabetikern. Diab Stoffw 1994;3:391–396.

    Google Scholar 

  41. Schrör K. Acetylsalicylsäure. Stuttgart, New York: Thieme Verlag, 1992.

    Google Scholar 

  42. Patrono C. Aspirin as an antiplatelet drug. N Engl J Med 1994; 330:1287–1294.

    Article  PubMed  CAS  Google Scholar 

  43. Roth GJ, Calverley DC. Aspirin, platelets and thrombosis: theory and practice. Blood 1994;83:885–898.

    PubMed  CAS  Google Scholar 

  44. Maugeri N, Evangelista V, Celardo A, Dell’Elba G, Martelli N, Piccardoni P, De Gaetano G, Cerletti C. Polymorphonuclear leukocyte-platelet interaction: Role of P-selectin in thromboxane B2 and leukotriene C4 cooperative synthesis. Thromb Haemost 1994; 72:450–456.

    PubMed  CAS  Google Scholar 

  45. Merhi Y, L-Lacoste L, Lam JYT. Neutrophil implications in platelet deposition and vasoconstriction after deep arterial injury by angioplasty in pigs. Circulation 1994; 90:997–1002.

    Article  PubMed  CAS  Google Scholar 

  46. Hernandez R, Alemany M, Bozzo J, Buchanan MR, Ordinas A, Bastida E. Platelet ad-hesivity to subendothelium is influenced by polymorphonuclear leukocytes: Studies with aspirin and salicylate. Haemostasis 1993; 23:1–7.

    PubMed  CAS  Google Scholar 

  47. López- Farré A, Caramelo CC, Esteban A, Alberola ML, Millás I, Montón M, Casado S. Effects of aspirin on platelet-neutrophil interactions. Role of nitric oxide and en-dothelin-1. Circulation 1995; 91:2080–2088.

    Article  PubMed  Google Scholar 

  48. Himmelreich G, Riess H. Rezidivierende Thromboembolien infolge gesteigerter, gegen Acetylsalicylsäure resistenter Thrombozytenaggregation. Dtsch Med Wschr 1991; 116:1353–1356.

    Article  PubMed  CAS  Google Scholar 

  49. Homberg M, Tschöpe D, Greber H, Hackländer T, Schwippert B, Gries FA, Mödder U. Opticusneuropathie bei Typ-I-Diabetes und Acetylsalicylsäure-refraktärer Thrombo-zytenaktivierung. Dtsch Med Wschr 1993; 118:290–295.

    Article  PubMed  CAS  Google Scholar 

  50. Tschöpe D, Schultheiß HP, Kolarov P, Schwippert B, Dannehl K, Nieuwenhuis HK, Kehrel B, Strauer B, Gries FA. Platelet membrane activation markers are predictive for increased risk of acute ischemic events. Circulation 1993; 88:1–6.

    Google Scholar 

  51. Schultheiß HP, Tschöepe D, Esser J, Schwippert B, Rösen P, Nieuwenhuis HK, Schmidt-Soltau C, Strauer B. Large platelets continue to circulate in an activated state after myocardial infarction. Eur J Clin Invest 1994; 24:243–248.

    Article  PubMed  Google Scholar 

  52. Kolarov P, Tschöpe D, Niewenhuis HK, Gries FA, Strauer B, Schultheiß HP. PTCA: Periprocedural platelet activation. Eur Heart J 1996; 17:1–7.

    Article  Google Scholar 

  53. Willard JE, Lange R, Hillis LD. The use of aspirin in ischemic heart disease. N Engl J Med 1992;327:175–181.

    Article  PubMed  CAS  Google Scholar 

  54. Schrör K. Antiplatelet drugs. A comparative review. Drugs 1995; 50:7–28.

    Article  PubMed  Google Scholar 

  55. Mori TA, Vandongen R, Douglas AJ, Mcculloch RK, Burke V. Differential effect of aspirin on platelet aggregation in IDDM. Diabetes 1992; 41:261–266.

    Article  PubMed  CAS  Google Scholar 

  56. Tschöpe D. Diabetische Thrombozytopathie. Aspekte zur Pathophysiologie, Diagnostik und Therapie. Osnabrück: Läkamp Verlag, 1992.

    Google Scholar 

  57. Braun M, Kramann J, Strobach H, Schrör K. Incomplete inhibition of platelet secretion by low-dose aspirin. Platelets 1994; 5:325–331.

    Article  PubMed  CAS  Google Scholar 

  58. Chronos NAF, Wilson DJ, Janes SL, Hutton RA, Buller NP, Goodall AH. Aspirin does not affect the flow cytometric detection of fibrinogen binding to, or release of α-granules or lysosomes from human platelets. Clin Sci 1994; 87:575–580.

    PubMed  CAS  Google Scholar 

  59. Gershlick AH, Spriggins D, Davies SW. Failure of epoprostenol (prostacyclin, PGI2) to inhibit platelet aggregation and to prevent restenosis after coronary angioplasty: results of a randomised placebo controlled trial. Br Heart J 1994; 71:7–15.

    Article  PubMed  CAS  Google Scholar 

  60. Rösen P, Schwippert B, Kaufmann L, Tschöpe D. Expression of adhesion molecules on the surface of activated platelets is diminished by PGI2-analogues and an NO (EDRF)-donor: a comparison between platelets of healthy and diabetic subjects. Platelets 1994; 5:45–52.

    Article  PubMed  Google Scholar 

  61. Abel K, Mieskes G, Walter U. Dephosphorylation of the focal adhesion protein VASP in vitro and in intact human platelets. FEBS Lett 1995; 370:184–188.

    Article  PubMed  CAS  Google Scholar 

  62. Schrör K. The basic pharmacology of ticlopidine and Clopidogrel. Platelets 1993; 4:252–261.

    Article  PubMed  Google Scholar 

  63. Hass WK, Easton JD, Adams HP, Pryse-Phillips W, Molony BA, Anderson S, Kamm B for the Ticlopidine Aspirin Stroke Study Group. A randomized trial comparing ticlopidine hydrochloride with aspirin for the prevention of stroke in high-risk patients. N Engl J Med 1989; 321:501–507.

    Article  PubMed  CAS  Google Scholar 

  64. Balsano F, Rizzon P, Violi F, Scrutinio D, Cimminiello C, Aguglia F, Pasotti C, Rudelli G and the Studia della Ticlopidina nell’ Angina Instabile Group. Antiplatelet treatment with ticlopidine in unstable angina. Circulation 1990; 82:17–25.

    Article  PubMed  CAS  Google Scholar 

  65. Janzon L, Bergqvist D, Boberg J, Boberg M, Eriksson I, Lindgärde F, Persson G. Prevention of myocardial infarction and stroke in patients with intermittent claudication; effects of ticlopidine. Results from STIMS, the Swedish Ticlopidine Multicentre Study. J Int Med 1990; 227:301–308.

    Article  CAS  Google Scholar 

  66. Schömig A, Neumann FJ, Kastrati A, Schühlen H, Blasini R, Hadamitzky M, Walter H, Zitzmann-Roth EM, Richardt G, Alt E, Schmitt C, Ulm K. A randomized comparison of antiplatelet and anticoagulant therapy after the placement of coronary-artery stents. N Engl J Med 1996;334:1084–1089.

    Article  PubMed  Google Scholar 

  67. De Catarina R, Sicari R, Bernini W, Lazzerini G, Buti Strada G, Giannessi D. Benefit/risk profile of combined antiplatelet therapy with ticlopidine and aspirin. Thromb Haemost 1991;65:504–510.

    Google Scholar 

  68. Cohen M. Platelet glycoprotein IIb/IIIa receptor inhibitors in coronary artery disease. Ann Int Med 1996; 124:843–844.

    PubMed  CAS  Google Scholar 

  69. Turner NA, Moake JL, Kamat SG, Schafer AI, Kleiman NS, Jordan R, McIntire LV. Comparative real-time effects on platelet adhesion and aggregation under flowing conditions of in vivo aspirin, heparin, and monoclonal antibody fragment against glycoprotein IIb-IIIa. Circulation 1994; 91:1354–1362.

    Article  Google Scholar 

  70. Tcheng JE, Ellis SG, George BS. Pharmacodynamics of chimeric glycoprotein IIb/IIIa integrin antibody Fab 7E3 in high-risk coronary angioplasty. Circulation 1994; 90:1757–1764.

    Article  PubMed  CAS  Google Scholar 

  71. Simoons ML, De Boer MJ, Van den Brand MJBM, Van Miltenburg AJM, Hoorntje JCA, Heyndrickx GR, Van der Wieken LR, De Bono D, Rutsch W, Schaible TF, Weisman HF, Klootwijk P, Nijssen KM, Stibbe J, De Feyter PJ and the European Cooperative Study Group. Randomized trial of a GPIIb/IIIa platelet receptor blocker in refractory unstable angina. Circulation 1994; 89:596–603.

    Article  PubMed  CAS  Google Scholar 

  72. Konstantopoulos K, Kamat SG, Schafer AI, Banez EI, Jordan R, Kleiman NS, Heliums D. Shear-induced platelet aggregation is inhibited by in vivo infusion of an anti-glycoprotein IIb/IIIa antibody fragment, c7E3 Fab, in patients undergoing coronary angioplasty. Circulation 1995; 91:1427–1431.

    Article  PubMed  CAS  Google Scholar 

  73. The EPIC Investigators. Use of a monoclonal antibody directed against the platelet glycoprotein IIb/IIIa receptor in high-risk coronary angioplasty. N Engl J Med 1994; 330:956–961.

    Article  Google Scholar 

  74. The EPIC Investigators. Randomised trial of coronary intervention with antibody against platelet IIb/IIIa integrin for reduction of clinical restenosis: results at six months. Lancet 1994; 343:881–886.

    Article  Google Scholar 

  75. Boehrer JD, Kereiakes DJ, Navetta FI, Califf RM, Topol EJ for the EPIC Investigators. Effects of profound platelet inhibition with c7E3 before coronary angioplasty on complications of coronary bypass surgery. J Am Coll Cardiol 1994; 74:1166–1170.

    CAS  Google Scholar 

  76. Hoorigan MC, Tcheng JE, Califf RM, Kitt M, Lorenz T, Sigmon K. Maximal benefit of integrelin platelet IIb Alla blockade 6–24 hours after therapy: results of the impact-II trial. J Am Coll Cardiol 1996; 27 (suppl): 55A.

    Article  Google Scholar 

  77. Kereiakes DJ, Kleiman NS, Ambrose JA, Cohen M, Rodriguez S, Palabricia T. A randomized double-blind, placebo controlled dose ranging study of tirofiban (MK-383) platelet IIb/IIIa receptor blockade in high-risk patients undergoing coronary angioplasty. J Am Coll Cardiol 1996; 27:536–542.

    Article  PubMed  CAS  Google Scholar 

  78. Murphy J, Bordet JC, Wyler B, Rissoan MC, Chomarat P, Defrance T, Miosssec P, McGregor JL. The vitronectin receptor (αvβ3) is implicated, in cooperation with P-selectin and platelet-activating factor, in the adhesion of monocytes to activated endothelial cells. Biochem J 1994; 304:537–542.

    PubMed  CAS  Google Scholar 

  79. Spangenberg P. Adhesion of activated platelets to polymorphonuclear leukocytes. Thromb Res 1994; 74 (suppl. 1): 35–44.

    Article  Google Scholar 

  80. Matsuno H, Stassen JM, Vermylen J, Deckmyn H. Inhibition of integrin function by a cyclic RGD-containing peptide prevents neointima formation. Circulation 1994; 90:2203–2206.

    Article  PubMed  CAS  Google Scholar 

  81. Szalony JA, Haas NF, Salyers AK, Taite B, Nicholson NS, Mehrotra DV, Feigen LP. Extended inhibition of platelet aggregation with the orally active platelet inhibitor SC-54684A. Circulation 1995; 91:411–416.

    Article  PubMed  CAS  Google Scholar 

  82. Harker LA. Platelets and vascular thrombosis. N Engl J Med 1994; 330:1006–1007.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Tschoepe, D., Schwippert, B. (1996). Acetylsalicylsäure im Vergleich zu anderen Thrombozytenfunktionshemmern — Wirkungsmechanismen. In: Schrör, K., Breddin, H.K. (eds) Acetylsalicylsäure im Kardiovaskulären System. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7574-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7574-5_4

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7575-2

  • Online ISBN: 978-3-0348-7574-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics