Skip to main content

Grundlagen der antithrombotischen Wirkung von Acetylsalicylsäure

  • Chapter

Zusammenfassung

Grundlage der antithrombotischen Wirkung von Acetylsalicylsäure ist die Hemmung der Thrombozytenfunktion. Diese beruht auf einer irreversiblen Hemmung der Thrombozyten-Cyclooxygenase nach Acetylierung einer funktionell wichtigen Aminosäure im Cyclooxygenasemolekül. Acetylsalicylsäure ist ein ca. 150-fach stärker wirksamer Inhibitor der (konstitutiven) Isoform der Thrombozyten-Cyclooxygenase (COX-1) als der (induzierbaren) Isoform (COX-2), die u.a. in Gefäßwandzellen unter Einfluß von Zytokinen und Wachstumsfaktoren exprimiert wird. Dies erklärt die unterschiedlichen Dosierung von Acetylsalicylsäure als Antithrombotikum bzw. Antiphlogistikum. Klinisch relevante prostaglandinunabhängige Mechanismen der plättchenfunktionshemmenden Wirkungen von Acetylsalicylsäure sind nicht bekannt.

Die Antiplättchenwirkungen von Acetylsalicylsäure beinhalten ausschließlich eine Hemmung der thrombo-zytären Thromboxansynthese nach Inhibition der COX-1. Andere Mechanismen der Plättchenaktivierung werden nicht beeinflußt. Daraus resultiert eine Resistenz gegenüber der Acetylsalicylsäure-vermittelten Hemmung der Thrombozytenfunktion bei allen Aktivierungsvorgängen, die nicht über die COX-1 verlaufen. Hierzu gehört die Aktivierung durch Scherstreß, ADP aber wahrscheinlich auch die Thromboxansynthese aus Vorstufen, die von der induzierbaren COX-2 der Gefäßwand stammen. Umgekehrt ist auch ein „sparing“ der endothelialen Prostacyclinsynthese durch low-dose Acetylsalicylsäure unter klinischen Bedingungen einer atherosklerotischen Gefäßwandschädigung nicht zu erwarten: Hemmung der COX-1 durch Acetylsalicylsäure hemmt auch die Vorstufenbereitstellung für die vaskuläre Prostacyclinsynthese für adhärente Thrombozyten.

Acetylsalicylsäure ist der „golden standard“ der Thrombozytenfunktionshemmer zur Prävention arterieller Thrombosen. Andere Wirkprinzipien sind allerdings denkbar und könnten als mögliche Alternativen zu Acetylsalicylsäure angesehen werden. Hierzu gehören GP IIb/IIIa-Antagonisten bei schweren akuten Plättchensyndromen und Thienopyridine bei ADP- oder scherstreßinduzierter Thrombozytenaktivierung. Auch stellt sich erneut die Frage nach klinischen Bedeutung von selektiven Thromboxaninhibitoren, die unabhängig vom Cy-clooxygenasetyp die Thromboxansynthese hemmen bzw.- Wirkung blockieren.

Summary

The antithrombotic action of acetylsalicylic acid is due to inhibition of platelet function. This is caused by an irreversible inhibition of the platelet cyclooxygenase subsequent to acetylation of a functionally important amino acid in the cyclooxygenase enzyme. Acetylsalicylic acid is an approximately 150-times more potent inhibitor of the (constitutive) isoform of the platelet enzyme (COX-1) as compared to the (inducible) isoform (COX-2) which is expressed in vascular cells by cytokines and growth factors. This explains the different dosage requirements of acetylsalicylic acid as antithrombotic and antiinflammtory drug (COX-2), respectively. There are no known prostaglandin-independent mechanisms for the antithrombotic action of acetylsalicylic acid in clinical use.

The antiplatelet effects of acetylsalicylic acid are exclusively due to inhibition of platelet-dependent thromboxane formation via inhibition of COX-1. Other pathways of platelet activation remain unchanged. This eventually results in a resistance against inhibition of platelet function by acetylsalicylic acid if platelets are stimulated by COX-1-independent factors. This involves activation by shear-stress, ADP but possibly also activation by thromboxane A2 if the precursors are provided via COX-2-regulated pathways. On the other hand, there is no „sparing“ of endothelial prostacyclin synthesis in clinical conditions of atherosclerotic endothelial injury. In this case, inhibition of COX-1 by acetylsalicylic acid will also reduce the amount of precursors for vascular pro-stacyclinsynthese, provided for example from adhering platelets.

Acetylsalicylic acid is the „golden standard“ antiplatelet agent to prevent arterial thromboses. However, a number of pharmacological alternatives exists and might compete with acetylsalicylic acid in certain indications, for example GPIIb/IIIa antagonists in severe acute platelet syndroms and thienopyridines in case of ADP-induced platelet activation and/or platelet activation by shear-stress. Finally, the clinical use of thromboxane inhibitors might be revisited: These compounds block thromboxane synthesis and/or -action independent of the source of the cyclooxvgenase.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Antiplatelet Trialists’ Collaboration. Collaborative overview of randomised trials of antiplatelet therapy- I. Prevention of death, myocardial infarction, and stroke by prolonged antiplatelet therapy in various categories of patients. Br Med J 1994; 308:81–106.

    Article  Google Scholar 

  2. Fuster V, Badimon L, Badimon JJ, Chesebro JH. The pathogenesis of coronary artery disease and the acute coronary syndromes. N Engl J Med 1992; 326:242–250 and 310–318.

    Article  PubMed  CAS  Google Scholar 

  3. Chapman I. Morphogenesis of occluding coronary artery thrombosis. Arch Pathol 1965;80:256–261.

    PubMed  CAS  Google Scholar 

  4. Davies MJ, Woolf N, Robertson WB. Pathology of acute myocardial infarction with particular reference to occlusive coronary thrombi. Br Heart J 1976; 38:659–664.

    Article  PubMed  CAS  Google Scholar 

  5. Davies MJ, Thomas AC. Plaque Assuring — the cause of acute myocardial infarction, sudden ischemic death, and crescendo angina. Br Heart J 1985; 53:363–367.

    Article  PubMed  CAS  Google Scholar 

  6. ISIS-2: Randomized trial of intravenous streptokinase, oral aspirin, both or neither among 17,187 cases of suspected acute myocardial infarction. Lancet 1988; 2:349–360.

    Google Scholar 

  7. Schrör K. Acetylsalicylsäure. Stuttgart: Thieme-Stuttgart, 1992.

    Google Scholar 

  8. Kopp E, Ghosh S. Inhibition of NF-kB by sodium salicylate and aspirin. Science 1994; 265:956–959.

    Article  PubMed  CAS  Google Scholar 

  9. Mueller RL, Scheidt S. History of drugs for thrombotic disease. Discovery, development, and directions for the future. Circulation 1994; 89:432–449.

    Article  PubMed  CAS  Google Scholar 

  10. Link KP, Overman RS, Sullivan WR, Huebner CF, Scheel LD. Studies on the hemorrhagic sweet clover disease. XI. Hypoprothrombinemia in the rat incuded by salicylic acid. J Biol Chem 1943; 147:463–473.

    CAS  Google Scholar 

  11. Quick AJ, Clesceri L. Influence of acetylsalicylic acid and salicylamide on the coagulation of blood. J Pharmacol Exp Ther 1960; 128:95–98.

    PubMed  CAS  Google Scholar 

  12. Gibson P. Salicylic acid for coronary thrombosis. Lancet 1948; June 19:965.

    Article  Google Scholar 

  13. Gibson P. Aspirin in the treatment of coronary thrombosis. Lancet 1949; Dec 24:1172.

    Google Scholar 

  14. Craven LL. Acetylsalicylic acid — possible preventive of coronary thrombosis. Ann Western Med Surg 1950; 5:95–99.

    Google Scholar 

  15. Craven LL. Experiences with aspirin (acetylsalicylic acid) in the non-specific prophylaxis of coronary thrombosis. Mississippi Valley Med J 1953; 75:38–40.

    CAS  Google Scholar 

  16. Craven LL. Prevention of coronary and cerebral thrombosis. Mississippi Valley Med J 1956;78:213–215.

    CAS  Google Scholar 

  17. Mann CC, Plummer ML. The Aspirin Wars. New York: Alfred A Knopf Publisher, 1991.

    Google Scholar 

  18. Quick AJ. Salicylates and bleeding: The aspirin tolerance test. Am J Med Sci 1967; 252:265–269.

    Article  Google Scholar 

  19. Breddin HK. Wirkungen von Pharmaka auf die Plättchenaggregation. Verhandlungen der Deutschen Arbeitsgemeinschaft für Blutgerinnungsforschung, Wien, 14.–15.4.1967. Stuttgart: FK Schattauer Verlag 1968: 90–93.

    Google Scholar 

  20. Evans G, Nishizawa EE, Packham MA, Mustard JF. The effect of acetylsalicylic acid (aspirin) on platelet function. Blood 1967; 30:550.

    Google Scholar 

  21. Weiss HJ, Aledort LM, Kochawa S. The effect of salicylates on the hemostatic properties of platelets in man. J Clin Invest 1968; 47:2169–2180.

    Article  PubMed  CAS  Google Scholar 

  22. O’Brien JR. Effects of salicylates on human platelets. Lancet 1968; 1:779–783.

    Article  PubMed  Google Scholar 

  23. Vane JR. Inhibition of prostaglandin biosynthesis as a mechanism of action of aspirinlike drugs. Nature New Biol 1971; 231:232–235.

    PubMed  CAS  Google Scholar 

  24. Smith JB, Willis AL. Aspirin selectively inhibits prostaglandin production in human platelets. Nature New Biol 1971; 231:235–237.

    PubMed  CAS  Google Scholar 

  25. Bretschneider E, Glusa E, Schrör K. ADP-, PAF- and adrenaline-induced platelet aggregation and thromboxane formation are not affected by a thromboxane receptor antagonist at physiological external Ca++ concentrations. Thromb Res 1994; 75:233–242.

    Article  PubMed  CAS  Google Scholar 

  26. Roth GJ, Stanford N, Majerus PW. Acetylation of prostaglandin synthase by aspirin. Proc Natl Acad Sci USA 1975; 72:3073–3076.

    Article  PubMed  CAS  Google Scholar 

  27. Patrignani R, Filabozzi P, Patrono C. Selective cumulative inhibition of platelet thromboxane production by low-dose aspirin in healthy subjects. J Clin Invest 1982; 69:1366–1372.

    Article  PubMed  CAS  Google Scholar 

  28. Clarke R, Mayo G, Price P, FitzGerald GA. Suppression of thromboxane A2 but not of systemic prostacyclin by controlled-release aspirin. N Engl J Med 1991; 325:1137–1141.

    Article  PubMed  CAS  Google Scholar 

  29. FitzGerald GA, Smith B, Pedersen AK, Brash AR. Increased prostacyclin biosynthesis in patients with severe atherosclerosis and platelet activation. N Engl J Med 1984; 310:1065–1068.

    Article  PubMed  CAS  Google Scholar 

  30. Knapp HR, Healy C, Lawson J, Fitz Gerald GA. Effects of low-dose aspirin on endogenous eicosanoid formation in normal and atherosclerotic men. Thromb Res 1988; 50:377–386.

    Article  PubMed  CAS  Google Scholar 

  31. Force T, Milani R, Hibberd P, Lorenz R, Uedelhoven W, Leaf A, Weber PC. Aspirin-induced decline in prostacyclin production in patients with coronary artery disease is due to decreased endoperoxide shift. Circulation 1991; 84:2286–2293.

    Article  PubMed  CAS  Google Scholar 

  32. Higgs GA, Salmon JA, Henderson B, Vane JR. Pharmacokinetics of aspirin and salicylate in relation to inhibition of arachidonate cyclooxygenase and antiinflammatory activity. Proc Natl Acad Sci USA 1987; 84:1417–1420.

    Article  PubMed  CAS  Google Scholar 

  33. Otto JC, Smith WL. Prostaglandin endoperoxide synthases-1 and -2. J Lipid Med 1995; 12:139–156.

    CAS  Google Scholar 

  34. Shimokawa T, Smith WL. Prostaglandin endoperoxide synthase: The aspirin acetylation region. J Biol Chem 1992; 267:12387–12392.

    PubMed  CAS  Google Scholar 

  35. DeWitt DI, El-Harith EA, Kraemer SA, Andrews MJ, Yao EF, Armstrong RL, Smith WL. The aspirin- and heme-binding sites of ovine and murine prostaglandin endoperoxide synthases. J Biol Chem 1990; 265:5192–5198.

    PubMed  CAS  Google Scholar 

  36. Lecomte M, Laneuville O, Ji C, DeWitt DI, Smith WL. Acetylation of human prostaglandin endoperoxide synthase-2 (cyclooxygenase-2) by aspirin. J Biol Chem 1994;269:13207–13215.

    PubMed  CAS  Google Scholar 

  37. Picot D, Loll PJ, Garavito RM. The X-ray crystal structure of the membrane protein prostaglandin H2 synthase. Nature 1994; 267:243–249.

    Article  Google Scholar 

  38. Loll PJ, Garavito RM. The isoforms of cyclooxygenase: Structure and function. Exp Opin Invest Drugs 1994;3:1171–1180.

    CAS  Google Scholar 

  39. Loll PL, Picot D, Garavito M. The structural basis of aspirin activity inferred from the crystal structure of inactivated prostaglandin H2 synthase. Nature Struct Biol 1995; 2:637–643.

    Article  PubMed  CAS  Google Scholar 

  40. Mitchell JA, Akarasereenont P, Thiemermann Ch, Flower RJ, Vane JR. Selectivity of nonsteroidal antiinflammatory drugs as inhibitors of constitutive and inducible cyclooxygenase. Proc Natl Acad Sci USA 1993; 90:11693–11697.

    Article  PubMed  CAS  Google Scholar 

  41. Wu KK. Platelet activation mechanisms and markers in arterial thrombosis. J Int Med 1996;239:17–34.

    Article  CAS  Google Scholar 

  42. Schrör K. Prostacyclin and Atherosclerosis. In: Rubanyi GM (ed) (1996) The endothelium in Clinical Practice: Source and Target of novel Concepts and Therapies. New York: Marcel Dekker (in press)

    Google Scholar 

  43. Pomerantz KB, Hajjar DP. Eicosanoids in regulation of arterial smooth muscle cell phenotype, proliferative capacity, and cholesterol metabolism. Arteriosclerosis 1989; 9:413–429.

    Article  PubMed  CAS  Google Scholar 

  44. Rimarachin JA, Jacobson JA, Szabo P, Maclouf J, Creminon C, Weksler BB. Regulation of cyclooxygenase-2-expression in aortic smooth muscle cells. Arterioscler Thromb 1994; 14:1021–1031.

    Article  PubMed  CAS  Google Scholar 

  45. Fitz Gerald GA, Healy C, Daugherty J. Thromboxane A2 biosynthesis in human disease. Fed Proc 1987; 46:154–158.

    CAS  Google Scholar 

  46. Vejar M, Fragasso G, Hackett D, Lipkin DP, Maseri A, Born GVR, Ciabattoni G, Patrono C. Dissociation of platelet activation and spontaneous myocardial ischemia in unstable angina. Thromb Haemost 1990; 63:163–168.

    PubMed  CAS  Google Scholar 

  47. Lewis HD, Davis JW, Archibald DG, Steinke WE, Smitherman TC, Doherty JE III, Schnaper, JW, LeWinter NM, Linares E et al. Protective effects of aspirin against acute myocardial infarction and death in men with unstable angina. Results of a Veterans Administration Cooperative study. N Engl J Med 1983; 309:396–403.

    Article  PubMed  Google Scholar 

  48. Tohgi H, Konno S, Tamura K, Kimura B, Kawano K. Effects of low-to-high doses of aspirin on platelet aggregability and metabolites of thromboxane A2 and prostacyclin. Stroke 1992; 23:1400–1403.

    Article  PubMed  CAS  Google Scholar 

  49. Tohgi H, Takahashi H, Tamura K. Antiplatelet medication in cerebrovascular disease: Potential sources of controversies and future strategies. Platelets 1994; 5:13–19.

    Article  PubMed  CAS  Google Scholar 

  50. Barnett HJM, Kaste M, Meldrum H, Eliasziw M. Aspirin dose in stroke prevention. Beautiful hypotheses slain by ugly facts. Stroke 1996; 27:588–592.

    Article  PubMed  CAS  Google Scholar 

  51. Rajagopalan S, McIntyre LV, Hall ER, Wu KK. The stimulation of arachidonic acid metabolism in human platelets by hydrodynamic forces. Biochim Biophys Acta 1988; 958:108–115.

    PubMed  CAS  Google Scholar 

  52. Moake JL, Turner NA, Stathopoulos NA, Nolasco L, Heliums JD. Shear-induced platelet aggregation can be mediated by vWF released from platelets, as well as by exogenous large or unusually large VWF-multimers, requires adenosine diphosphate, and is resistant to aspirin. Blood 1988; 71:1366–1374.

    PubMed  CAS  Google Scholar 

  53. Maalej N, Folts JD. Increased shear stress overcomes the antithrombotic platelet inhibitory effect of aspirin in stenosed dog coronary arteries. Circulation 1996; 93:1201–1205.

    Article  PubMed  CAS  Google Scholar 

  54. Braun M, Kramann J, Strobach H, Schrör K. Incomplete inhibition of platelet secretion by low-dose aspirin. Platelets 1994; 5:325–331.

    Article  PubMed  CAS  Google Scholar 

  55. Larsson PT, Wallen NH, Hjemdahl P. Norepinephrine-induced human platelet activation in vivo is only partly counteracted by aspirin. Circulation 1994; 89:1951–1957.

    Article  PubMed  CAS  Google Scholar 

  56. Kessels H, Beguin S, Andree H, Hemker HC. Measurement of thrombin generation in whole blood — the effect of heparin and aspirin. Thromb Haemost 1994; 72:78–83.

    PubMed  CAS  Google Scholar 

  57. Darius H, Sellig S, Belz GG, Darius BN. Aspirin 500 mg is superior to 100 and 40 mg/d for prevention of restenosis following PTCA. Circulation 1994; 90:1–651.

    Article  Google Scholar 

  58. Pappas JM, Westengard JC, Bull BS. Population variability in the effect of aspirin on platelet function. Implications for clinical trials and therapy. Arch Pathol Lab Med 1994; 118:801–804.

    PubMed  CAS  Google Scholar 

  59. Benedek IH, Joshi AS, Pieniaszek HJ, King S-YP, Kornhauser DM. Variability in the pharmacokinetics and pharmacodynamics of low dose aspirin in healthy male volunteers. J Clin Pharmacol 1995; 35:1181–1186.

    PubMed  CAS  Google Scholar 

  60. Hla T, Ristimaki A, Appleby S, Barriocanai JG. Cyclooxygenase gene expression in inflammation and angiogenesis. Ann New York Acad Sci 1993; 696:197–204.

    Article  CAS  Google Scholar 

  61. Schrör K. Antiplatelet drugs. A comparative review. Drugs 1995; 50:7–28.

    Article  PubMed  Google Scholar 

  62. Ridogrel Versus Aspirin Patency Trial (RAPT). Randomized trial of ridogrel, a combined thromboxane A2 synthase inhibitor and thromboxane A2/prostaglandin endoper-oxide receptor antagonist, versus aspirin as adjunct to thrombolysis in patients with acute myocardial infarction. Circulation 1994;89:588–595.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Schrör, K. (1996). Grundlagen der antithrombotischen Wirkung von Acetylsalicylsäure. In: Schrör, K., Breddin, H.K. (eds) Acetylsalicylsäure im Kardiovaskulären System. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7574-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7574-5_3

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7575-2

  • Online ISBN: 978-3-0348-7574-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics