Skip to main content

Parasympathetic Innervation of Airways Smooth Muscle

  • Chapter
Airways Smooth Muscle

Abstract

Nearly a century before the first accurate descriptions of the neuronal action potential were published [1, 2] and the chemical basis of synaptic transmission was firmly established [3, 4] studies carried out in isolated lungs and in the lungs of dead animals demonstrated that electrical stimulation of the vagus nerves elicited “pneumoconstriction”, or what we now recognize were contractions of the bronchial musculature and thus constriction of the airways [5, 6]. Today, more than 150 years since the publication of these pioneering studies, it is well established that the vagal innervation of the airways, and more specifically, the parasympa- thetic innervation of airways smooth muscle, is the primary means by which airways tone is regulated in all mammalian species including humans [6–8]. This observation, coupled with the belief that dysfunction of the parasympathetic innervation of the airways might contribute to various pulmonary disorders [8–13] has led to a continuous effort to determine the factors which influence parasympathetic input to the airways and the effects this input has on the physiology of the lungs in states of both health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Katz B. Nerve, muscle, and synapse. McGraw-Hill, Inc., 1966.

    Google Scholar 

  2. Hille B. Ionic channels of excitable membranes. Sunderland: Sinauer Associates, Inc., 1992.

    Google Scholar 

  3. Dale HH. Symposium on neurohumoral transmission. Pharmacol Rev 1954; 6: 1–131.

    Google Scholar 

  4. Davenport HW. Early history of the concept of chemical transmission of the nerve impulse. The Physiologist 1991; 34: 129, 178–190.

    Google Scholar 

  5. Macklin CC. The musculature of the bronchi and lungs. Physiol Rev 1929; 9: 1–60.

    Google Scholar 

  6. Widdicombe JG. Regulation of tracheobronchial smooth muscle. Physiol Rev 1963; 43: 1–37.

    PubMed  CAS  Google Scholar 

  7. Richardson JB. Nerve supply to the lungs. Am Rev Respir Dis 1979; 119: 785–802.

    PubMed  CAS  Google Scholar 

  8. Barnes PJ. Neural control of human airways in health and disease. Am Rev Respir Dis 1986; 134: 1289–1314.

    PubMed  CAS  Google Scholar 

  9. Salter HH. Asthma: Its pathology and treatment. New York: William Wood & Company, 1882.

    Google Scholar 

  10. Binger MW, Gaarde FW, Markowitz J. A study of bronchial reflexes in the guinea-pig. Am J Physiol 1930; 96: 647–656.

    Google Scholar 

  11. Kuntz A. The autonomic nervous system. Philadelphia: Lea & Febiger, 1953.

    Google Scholar 

  12. Gold WM. The role of the parasympathetic nervous system in airways disease. Postgrad Med J 1975; 51: 53–62.

    Article  PubMed  CAS  Google Scholar 

  13. Barnes PJ. Asthma as an axon reflex. Lancet 1986; 1: 242–245.

    Article  PubMed  CAS  Google Scholar 

  14. Langley JN. The autonomic nervous system. Cambridge: W. Heffer & Sons, Ltd., 1921.

    Google Scholar 

  15. Gaskell WH. The involuntary nervous system. London: Longmans, Green and Co., 1916.

    Book  Google Scholar 

  16. Karczmar AG. Historical development of concepts of ganglionic transmission. In: Karczmar AG, Koketsu K, Nishi S, editors. Autonomic and enteric ganglia -Transmission and its pharmacology. New York: Plenum Press, 1986: 3–26.

    Chapter  Google Scholar 

  17. Fillenz M. Noradrenergic neurones. Cambridge: Cambridge University Press, 1990.

    Google Scholar 

  18. Ambache N. The use and limitations of atropine for pharmacological studies on autonomic effectors. Pharmacol. Rev. 1955; 7: 467–494.

    PubMed  CAS  Google Scholar 

  19. Dale HH. A survey of present knowledge of the chemical regulation of certain functions by natural constituents of the tissues. Bulletin of the Johns Hopkins Hospital 1933; 53: 297–347.

    CAS  Google Scholar 

  20. Dale HH. Pharmacology and nerve-endings. Proc Roy Soc Med 1935; 28: 319–332.

    PubMed  CAS  Google Scholar 

  21. Dale HH, Feldberg W. Chemical transmission of secretory impulses to sweat glands of cats. J Physiol 1934; 82: 121–128.

    PubMed  CAS  Google Scholar 

  22. Burnstock G. Do some nerve cells release more than one transmitter? Neurosci. 1976; 1: 239–248.

    Article  CAS  Google Scholar 

  23. Burnstock G, Hoyle CHV. Autonomic Neuroeffector Mechanisms. United Kingdom: Harwood Academic Publishers, 1992.

    Google Scholar 

  24. Campbell G. Cotransmission. Ann Rev Pharmacol Toxicol 1987; 27: 51–70.

    Article  CAS  Google Scholar 

  25. Bartfai T, Iverfeldt K, Fisone G. Regulation of the release of coexisting neurotransmitters. Ann Rev Pharmacol Toxicol 1988; 28: 285–310.

    Article  CAS  Google Scholar 

  26. Morris JL, Gibbins IL. Co-transmission and neuromodulation. In: Burnstock G, Hoyle CHV, editors. Autonomic neuroeffector mechanisms. United Kingdom: Harwood Academic Publishers, 1992: 33–119.

    Google Scholar 

  27. Buckley NJ, Caulfield M. Transmission: Acetylcholine. In: Burnstock G, Hoyle CHV, editors. Autonomic neuroeffector mechanisms. United Kingdom: Harwood Academic Publishers, 1992: 257–322.

    Google Scholar 

  28. Kalia M. Brain stem localization of vagal preganglionic neurones. J Auton Nerv Syst 1981; 3: 451–481.

    Article  PubMed  CAS  Google Scholar 

  29. Coburn RF. Peripheral airways ganglia. Ann Rev Physiol 1987; 49: 573–582.

    Article  CAS  Google Scholar 

  30. Irvin CG, Boileau R, Tremblay J, Martin RR, Macklem PT. Bronchodilatation: Non-cholinergic, nonadrenergic mediation demonstrated in vivo in the cat. Science 1980; 207: 791–792.

    Article  PubMed  CAS  Google Scholar 

  31. Diamond L, O’Donnell M. A nonadrenergic vagal inhibitory pathway to feline airways. Science 1980; 208: 185–188.

    Article  PubMed  CAS  Google Scholar 

  32. Yip P, Palombini B, Coburn RF. Inhibitory innervation to the guinea-pig trachealis muscle. J Appl Physiol 1981; 50: 374–382.

    PubMed  CAS  Google Scholar 

  33. Myers AC, Undem BJ, Weinreich D. Electrophysiological properties of neurones in guinea-pig bronchial parasympathetic ganglia. Am J Physiol 1990; 259: L403–L409.

    PubMed  CAS  Google Scholar 

  34. Canning BJ, Undem BJ. Relaxant innervation of the guinea-pig trachealis: Demonstration of capsaicin-sensitive and insensitive vagal pathways. J Physiol 1993; 460: 719–739.

    PubMed  CAS  Google Scholar 

  35. Canning BJ, Undem BJ. Evidence that distinct neural pathways mediate parasympathetic contractions and relaxations of guinea-pig trachealis. J. Physiol. 1993; 471: 25–40.

    PubMed  CAS  Google Scholar 

  36. Cameron AR, Coburn RF. Electrical and anatomic characteristics of cells of ferret paratracheal ganglion. Am J Physiol 1984; 246: C450–C458.

    PubMed  CAS  Google Scholar 

  37. Mitchell RA, Herbert DA, Baker DG, Basbaum CB. In vivo activity of tracheal parasympathetic ganglion cells innervating tracheal smooth muscle. Brain Res 1987; 437: 157–160.

    Article  PubMed  CAS  Google Scholar 

  38. Baker DG, McDonald DM, Basbaum CB, Mitchell RA. The architecture of nerves and ganglia of the ferret trachea as revealed by acetylcholinesterase histochemistry. J Comp Neurol 1986; 246: 513–526.

    Article  PubMed  CAS  Google Scholar 

  39. Richardson J, Beland J. Nonadrenergic inhibitory nervous system in human airways. J Appl Physiol 1976; 41: 764–771.

    PubMed  CAS  Google Scholar 

  40. Middendorf WF, Russell JA. Innervation of airways smooth muscle in the baboon: evidence of a nonadrenergic inhibitory system. J Appl Physiol 1980; 48: 947–956.

    PubMed  CAS  Google Scholar 

  41. Cameron AR, Johnston CF, Kirkpatrick CT, Kirkpatrick MCA. The quest for the inhibitory neurotransmitter in bovine tracheal smooth muscle. Quart J Exp Physiol 1983; 68: 413–426.

    CAS  Google Scholar 

  42. Sheller JR, Brigham KL. Bronchomotor responses of isolated sheep airways to electrical field stimulation. J Appl Physiol 1982; 53: 1088–1093.

    PubMed  CAS  Google Scholar 

  43. Doidge JM, Satchell DG. Adrenergic and non-adrenergic inhibitory nerves in mammalian airways. J Auton Nerv Sys 1982; 5: 83–99.

    Article  CAS  Google Scholar 

  44. Kannan MS, Johnson DE. Nitric oxide mediates the neural nonadrenergic, noncholinergic relaxation of pig tracheal smooth muscle. Am J Physiol 1992; 262: L511–L514.

    PubMed  CAS  Google Scholar 

  45. Widdicombe JG, Nadel JA. Airways volume, airways resistance, and work and force of breathing: Theory. J Appl Physiol 1963; 18: 863–868.

    PubMed  CAS  Google Scholar 

  46. Coleridge HM, Coleridge JCG, Schultz HD. Afferent pathways involved in reflex regulation of airways smooth muscle. Pharmacol Ther 1989; 42: 1–63.

    Article  PubMed  CAS  Google Scholar 

  47. Otis AB. A perspective of respiratory mechanics. J Appl Physiol 1983; 54: 1183–1187.

    PubMed  CAS  Google Scholar 

  48. Karczewski W, Widdicombe JG. The role of the vagus nerves in the respiratory and circulatory reactions to anaphylaxis in rabbits. J Physiol 1969; 201: 293–304.

    PubMed  CAS  Google Scholar 

  49. Jammes Y, Mei N. Assessment of the pulmonary origin of bronchoconstrictor vagal tone. J Physiol 1979; 291: 305–316.

    PubMed  CAS  Google Scholar 

  50. Rybicki KJ, Kaufman MP. Stimulation of group III and IV muscle afferents reflexly decreases total pulmonary resistance in dogs. Respir Physiol 1985; 59: 185–195.

    Article  PubMed  CAS  Google Scholar 

  51. Connelly JC, McCallister LW, Kaufman MP. Stimulation of the caudal ventrolateral medulla decreases total lung resistance in dogs. J Appl Physiol 1987; 63: 912–917.

    PubMed  CAS  Google Scholar 

  52. Dixon WE, Brodie TG. Contributions to the physiology of the lungs. Part I. The bronchial muscles, their innervation, and the action of drugs upon them. J Physiol 1903; 29: 97–173.

    PubMed  CAS  Google Scholar 

  53. Honjin R. On the ganglia and nerves of the lower respiratory tract of the mouse. J Comp Neurol 1954; 95: 263–288.

    Google Scholar 

  54. Honjin R. Experimental degeneration of the vagus, and its relation to the nerve supply of the lung of the mouse, with special reference to the crossing innervation of the lung by the vagi. J Comp Neurol 1956; 106: 1–19.

    Article  PubMed  CAS  Google Scholar 

  55. Olsen CR,Colebatch HJH, Membel PE, Nadel JA, Staub NC. Motor control of pulmonary airways studied by nerve stimulation. J Appl Physiol 1965; 20: 202–208.

    Google Scholar 

  56. Cabezas GA, Graf PD, Nadel JA. Sympathetic versus parasympathetic nervous regulation of airways in dogs. J Appl Physiol 1971; 31: 651–655.

    PubMed  CAS  Google Scholar 

  57. Undem BJ, Myers AC, Barthlow H, Weinreich D. Vagal innervation of the guinea-pig bronchus. J Appl Physiol 1990; 69: 1336–1346.

    PubMed  CAS  Google Scholar 

  58. Loofbourrow GN, Wood WB, Baird IL. Tracheal constriction in the dog. Am J Physiol 1957; 191: 411–415.

    PubMed  CAS  Google Scholar 

  59. Brown JK, Leff AR, Frey MJ, Reed BR, Bold WM. Physiological and pharmacological properties of canine trachealis muscle in vivo. J Appl Physiol 1980; 49: 84–94.

    PubMed  CAS  Google Scholar 

  60. Wallach JH, Rybicki, KJ, Kaufman, MP. Anatomical localization of the cells of origin of efferent fibres in the superior laryngeal and recurrent laryngeal nerves of dogs. Brain Res 1983; 261: 307–311.

    Article  PubMed  CAS  Google Scholar 

  61. Widdicombe JG. Action potentials in parasympathetic and sympathetic efferent fibres to the trachea and lungs of dogs and cats. J Physiol 1966; 186: 56–88.

    PubMed  CAS  Google Scholar 

  62. Chesrown SE, Venugopalan CS, Gold WM, Drazen JM. In vivo demonstration of nonadrenergic inhibitory innervation of the guinea-pig trachea. J Clin Invest 1980; 65: 314–320.

    Article  PubMed  CAS  Google Scholar 

  63. Baker DG. Parasympathetic motor pathways to the trachea: Recent morphologic and electrophysiologic studies. Clinics in Chest Med. 1986; 7: 223–229.

    CAS  Google Scholar 

  64. Kerr FWL. Preserved vagal visceromotor function following destruction of the dorsal motor nucleus. J Physiol 1969; 202: 755–769.

    PubMed  CAS  Google Scholar 

  65. Haselton JR, Solomon KC, Motekaitis AM, Kaufman MP. Bronchomotor vagal preganglionic cell bodies in the dog: an anatomic and functional study. J Appl Physiol 1992; 73: 1122–1129.

    PubMed  CAS  Google Scholar 

  66. Kalia M, Mesulam M-M. Brain stem projections of sensory and motor components of the vagus complex in the cat: II. Laryngeal, tracheobronchial pulmonary, cardiac, and gastrointestinal branches. J Comp Neurol 1980; 193: 467–508.

    Article  PubMed  CAS  Google Scholar 

  67. Kalia M. Organization of central control of airways. Ann Rev Physiol 1987; 49: 595–609.

    Article  CAS  Google Scholar 

  68. Kerr FWL. Function of the dorsal motor nucleus of the vagus. Science 1967; 157: 451–452.

    Article  PubMed  CAS  Google Scholar 

  69. Haselton JR, Padrid PA, Kaufman MP. Activation of neurones in the rostral ventrolateral medulla increases bronchomotor tone in dogs. J Appl Physiol 1991; 71: 210–216.

    PubMed  CAS  Google Scholar 

  70. Hey JA, delPrado M, Chapman RW. Activation of a novel medullary pathway elicits a vagal, cholinergic bronchoconstriction in guineapigs. Pulm Pharmacol 1990; 3: 53–54.

    Article  PubMed  CAS  Google Scholar 

  71. Jammes Y, Fornaris E, Mei N. Barrat E. Afferent and efferent components of the bronchial vagal branches in cats. J Auton Nerv Syst 1982; 5: 165–176.

    Article  PubMed  CAS  Google Scholar 

  72. Evans DHL, Murray JG. Histological and functional studies on the fibre composition of the vagus nerve of the rabbit. J Anat 1954; 88: 320–337.

    PubMed  CAS  Google Scholar 

  73. Agostoni E, Chinnock JE, DeBurgh-Daly M, Murray JG. Functional and histological studies of the vagus nerve and its branches to the heart, lungs and abdominal viscera in the cat. J Physiol 1957; 135: 182–205.

    PubMed  CAS  Google Scholar 

  74. Mitchell RA, Herbert DA, Richardson CA. Neurohumoral regulation of airways smooth muscle: Role of the tracheal ganglia. In Lahiri S, Forster RE, Davies RO, Pack AI, editors. Chemoreceptors and reflexes in breathing: Cellular and molecular aspects. New York.: Oxford University Press, 1989: 299–309.

    Google Scholar 

  75. Wild JM, Johnston BM, Gluckman PD. Central projections of the nodose ganglion and the origin of vagal efferents in the lamb. J Anat 1991; 175: 105–129.

    PubMed  CAS  Google Scholar 

  76. Widdicombe JG. Vagal reflexes in the airways. In: Kaliner MA, Barnes PJ, editors. The Airways. Neural control in health and disease. New York, Basel: Marcel Dekker, 1988: 187–202.

    Google Scholar 

  77. Lama A, Delpierre S, Jammes Y. The effects of electrical stimulation of myelinated and nonmyelinated vagal motor fibres on airways tone in the rabbit and the cat. Respir Physiol 1988; 74: 265–274.

    Article  PubMed  CAS  Google Scholar 

  78. McAllen RM, Spyer KM. Two types of vagal preganglionic motoneurones projecting to the heart and lungs. J Physiol 1978; 282: 353–364.

    PubMed  CAS  Google Scholar 

  79. Myers AC. An anatomical, electrophysiological, and immunopharmacological characterization of parasympathetic ganglion neurones on the airways of the guinea-pig. [Dissertation, Ph.D. Thesis], University of Maryland, Baltimore, Maryland, USA. 1989.

    Google Scholar 

  80. Coburn RF. Neural coordination of excitation of ferret trachealis muscle. Am J Physiol 1984; 246: C459–C466.

    PubMed  CAS  Google Scholar 

  81. Baluk P, Fujiwara T, Matsuda S. The fine structure of the ganglia of the guinea-pig trachea. Cell Tissue Res 1985; 239: 51–60.

    Article  PubMed  CAS  Google Scholar 

  82. Kummer W. Ultrastructure of calcitonin gene-related peptide-immunoreactive nerve fibres in guinea-pig peribronchial ganglia. Regul Peptides 1992; 37: 135–142.

    Article  CAS  Google Scholar 

  83. Bowden JJ, Gibbins IL. Vasoactive intestinal peptide and neuropeptide Y coexist in non-noradrenergic sympathetic neurones to guinea-pig trachea. J Auton Nerv Syst 1992; 38: 1–20.

    Article  PubMed  CAS  Google Scholar 

  84. Kummer W, Fischer A, Kurkowski R, Heym C. The sensory and sympathetic innervation of guinea-pig lung and trachea as studied by retrograde neuronal tracing and double-labelling immunohistochemistry. Neurosci 1992; 49: 715–737.

    Article  CAS  Google Scholar 

  85. Gibbins IL, Campbell GC, Morris JL, Nilsson S, Murphy R. Pathway-specific connections between peptide-containing preganglionic and postganglionic neurones in the vagus nerve of the toad (Bufo marinus). J Auton Nerv Syst 1987; 20: 43–55.

    Article  PubMed  CAS  Google Scholar 

  86. Peng HB, Chen Q. Localization of calcitonin gene-related peptide (CGRP) at a neuronal nicotinic synapse. Neurosci. Letters 1988; 95: 75–80.

    Article  CAS  Google Scholar 

  87. Gibbins IL. Vasoconstrictor, vasodilator and pilomotor pathways in sympathetic ganglia of guinea-pigs. Neurosci 1992; 47: 657–672.

    Article  CAS  Google Scholar 

  88. Bachoo M, Polosa C. Long-term potentiation of nicotinic transmission by a heterosynaptic mechanism in the stellate ganglion of the cat. J Neurophysiol 1991; 65: 639–647.

    PubMed  CAS  Google Scholar 

  89. Bachoo M, Polosa C. Preganglionic axons from the third thoracic spinal segment fail to induce long-term potentiation in the superior cervical ganglion of the cat. Can J Physiol Pharmacol 1992; 70: S27-S3l.

    Article  PubMed  Google Scholar 

  90. Mansfield L, Stein MR. Gastroesophageal reflux and asthma: A possible reflex mechanism. Ann Allergy 1978; 41: 224–226.

    PubMed  CAS  Google Scholar 

  91. Roberts AM, Kaufman MP, Baker DG, Brown JK, Coleridge HM, Coleridge JCG. Reflex tracheal contraction induced by stimulation of bronchial C-fibres in dogs. J Appl Physiol 1981; 51: 485–493.

    PubMed  CAS  Google Scholar 

  92. Russel JA, Lai-Fook SJ. Reflex bronchoconstriction induced by capsaicin in the dog. J Appl Physiol 1979; 47: 961–967.

    Google Scholar 

  93. Drazen JM, Austen KF. Pulmonary response to antigen infusion in the sensitized guinea-pig: modification by atropine. J Appl Physiol 1975; 39: 916–919.

    PubMed  CAS  Google Scholar 

  94. Inoue H, Aizawa H, Miyazaki N, Ikeda T, Shigematsu N. Possible roles of the peripheral vagal nerve in histamine-induced bronchoconstriction in guinea-pigs. Eur Respir J 1991; 4: 860–866.

    PubMed  CAS  Google Scholar 

  95. Coleridge JCG, Coleridge HM. Afferent vagal C fibre innervation of the lungs and airways and its functional significance. Rev Physiol Biochem Pharmacol 1984; 99: 1–110.

    Article  PubMed  CAS  Google Scholar 

  96. McCallister LW, McCoy KW, Connelly JC, Kaufman MP. Stimulation of groups III and IV phrenic afferents reflexly decreases total lung resistance in dogs. J Appl Physiol 1986; 61: 1346–1351.

    PubMed  CAS  Google Scholar 

  97. Nadel JA, Widdicombe JG. Effect of changes in blood gas tensions and carotid sinus pressure on tracheal volume and total lung resistance to air flow. J Physiol 1962; 163: 13–33

    PubMed  CAS  Google Scholar 

  98. DeBurgh Daly M, Lambertsen C, Schweitzer A. The effects upon the bronchial musculature of altering the oxygen and carbon dioxide tensions of the blood perfusing the brain. J Physiol 1953; 119: 292–341

    Google Scholar 

  99. Dixon M, Jackson DM, Richards IM. The effects of histamine, acetylcholine and 5-hydroxytryptamine on lung mechanics and irritant receptors in the dog. J Physiol 1979; 287: 393–403.

    PubMed  CAS  Google Scholar 

  100. Mitchell RA, Herbert DA, Baker DG. Inspiratory rhythm in airways smooth muscle tone. J Appl Physiol 1985; 58: 911–920.

    PubMed  CAS  Google Scholar 

  101. Farmer SG. Role of kinins in airways diseases. Immunopharmacol 1991; 22: 1–20.

    Article  CAS  Google Scholar 

  102. Ballati L, Evangelista S, Maggi CA, Manzini S. Effects of selective tachykinin receptor antagonists on capsaicin-and tachykinin-induced bronchospasm in anaesthetized guinea-pigs. Eur J Pharmacol 1992; 214: 215–221.

    Article  PubMed  CAS  Google Scholar 

  103. Mills JE, Widdicombe JG. Role of the vagus nerves in anaphylaxis and histamine-induced bronchoconstriction in guinea-pigs. Br J Pharmacol 1970; 39: 724–732.

    PubMed  CAS  Google Scholar 

  104. Mansfield L, Hamiester HH, Spaulding HS, Smith NJ, Glab N. The role of the vagus nerve in airways narrowing caused by intraesophageal hydrochloric acid provocation and esophageal distension. Ann Allergy 1981; 47: 431–434.

    PubMed  CAS  Google Scholar 

  105. Gertner A, Bromberger-Barnea B, Traystman R, Berzon D, Menkes H. Responses of the lung periphery to ozone and histamine. J Appl Physiol 1983; 54: 640–646.

    Article  PubMed  CAS  Google Scholar 

  106. Szarek JL, Gillespie MN, Altiere RJ, Diamond L. Reflex activation of the nonadrenergic noncholinergic inhibitory nervous system in feline airways. Am Rev Respir Dis 1986; 133: 1159–1162.

    PubMed  CAS  Google Scholar 

  107. Haxhiu MA, Deal EC, Norcia MP, VanLunteren E, Mitra J, Cheraiack NS. Medullary effects of nicotine and GABA on tracheal smooth muscle tone. Respir Physiol 1986; 64: 351–363.

    Article  PubMed  CAS  Google Scholar 

  108. Padrid PA, Haselton JR, Kaufman MP. Role of caudal ventrolateral medulla in reflex and central control of airways caliber. J Appl Physiol 1991; 71: 2274–2282.

    PubMed  CAS  Google Scholar 

  109. Richardson CA, Herbert DA, Mitchell RA. Modulation of pulmonary stretch receptors and airways resistance by parasympathetic efferents. J Appl Physiol 1984; 57: 1842– 1849.

    PubMed  CAS  Google Scholar 

  110. Cunningham ET, Ravich WJ, Jones B, Donner MW. Vagal reflexes referred from the upper aerodigestive tract: An infrequently recognized cause of common cardiorespiratory responses. Ann Int Med 1992; 116: 575–582.

    PubMed  Google Scholar 

  111. Sontag SJ. Gut feelings about asthma. The Burp and the Wheeze. Chest 1991; 99: 1321–1324.

    Article  PubMed  CAS  Google Scholar 

  112. Kreulen DL. Integration in autonomic ganglia. The Physiologist. 1984; 27: 49–55.

    PubMed  CAS  Google Scholar 

  113. Szurzewski JH, King BF. Physiology of prevertebral ganglia in mammals with special reference to inferior mesenteric ganglion. In: Handbook of physiology -The gastrointestinal system. I. American Physiological Society. Bethesda, Maryland. 1989; 519–592.

    Google Scholar 

  114. Undem BJ, Myers AC. Autonomic ganglia. In: Barnes PJ, editor. Autonomic nerves in the respiratory system. United Kingdom: Harwood Academic Publishers, 1994: In Press.

    Google Scholar 

  115. Larsell O. The ganglia, plexuses, and nerve-terminations of the mammalian lung and pleura pulmonalis. J Comp Neurol 1923; 35: 97–132.

    Article  Google Scholar 

  116. Gaylor JB. The intrinsic nervous mechanism of the human lung. Brain 1934; 57: 143–160.

    Article  Google Scholar 

  117. Knight DS. A light and electron microscopic study of feline intrapulmonary ganglia. J Anat 1980; 131: 413–428.

    PubMed  CAS  Google Scholar 

  118. Keith IM, Pelto-Huikko M, Schalling M, Hökfelt T. Calcitonin gene-related peptide and its mRNA in pulmonary neuroendocrine cells and ganglia. Histochemistry 1991; 96: 311–315.

    Article  PubMed  CAS  Google Scholar 

  119. Inoue T, Ito Y. Characteristics of neuro-effector transmission in the smooth muscle layer of dog bronchiole and modifications by autocoids. J Physiol 1986; 370: 551–565.

    PubMed  CAS  Google Scholar 

  120. Ellis JL, Undem BJ. Inhibition by L-NG-nitro-L-arginine of nonadrenergic-noncholinergic-mediated relaxations of human isolated central and peripheral airways. Am Rev Respir Dis 1992; 146: 1543–1547.

    PubMed  CAS  Google Scholar 

  121. Baluk P, Gabella G. Innervation of the guinea-pig trachea: A quantitative morphological study of intrinsic neurones and extrinsic nerves. J Comp Neurol 1989; 285: 117–132.

    Article  PubMed  CAS  Google Scholar 

  122. Chiang C-H, Gabella G. Quantitative study of the ganglion neurones of the mouse trachea. Cell Tissue Res 1986; 246: 243–252.

    Article  PubMed  CAS  Google Scholar 

  123. Gabella G. On the plasticity of form and structure of enteric ganglia. J Auton Nerv Syst 1990; 30: S59–S66.

    Article  PubMed  Google Scholar 

  124. Coburn RF. The anatomy of the ferret paratracheal parasympathetic nerve-ganglion plexus. Exp Lung Res 1984; 7: 1–9.

    Article  PubMed  CAS  Google Scholar 

  125. Furness JB, Bornstein JC, Murphy R, Pompolo S. Roles of peptides in transmission in the enteric nervous system. Trends in Neurosci 1992; 15: 66–71.

    Article  CAS  Google Scholar 

  126. Fowler JC, Weinreich D. Control of repetitive firing in rabbit parasympathetic tracheal ganglion cells in vitro. Soc Neurosci 1985; 11: 1182.

    Google Scholar 

  127. Knoper SR, Bloom JW, Halonen M, Kreulen DL. Morphologic and electrophysiologic characteristics of rabbit airways ganglia. Am Rev Respir Dis 1988; 137: 9.

    Google Scholar 

  128. Burnstock G, Allen TGJ, Hassall CJS. The electrophysiologic and neurochemical properties of paratracheal neurones in situ and in dissociated cell culture. Am Rev Respir Dis 1987; 136: S23–S26.

    PubMed  CAS  Google Scholar 

  129. Dey RD, Shannon WA, Said SI. Localization of VIP-immunoreactive nerves in airways and pulmonary vessels of dogs, cats, and human subjects. Cell Tissue Res 1981; 220: 231–238.

    PubMed  CAS  Google Scholar 

  130. Lundberg JN, Fahrenkrug J, Hökfelt T, Martling C-R, Larsson O, Tatemoto K, Änggard A. Co-existence of peptide HI (PHI) and VIP in nerves regulating blood flow and bronchial smooth muscle tone in various mammals including man. Peptides 1984; 5: 593–606.

    Article  PubMed  CAS  Google Scholar 

  131. Laitinen A, Partanen M, Hervonen A, Pelto-Huikko M, Laitinen LA. VIP-like immunoreactive nerves in human respiratory tract. Histochemistry. 1985; 82: 313–319.

    Article  PubMed  CAS  Google Scholar 

  132. Dey RD, Hoffpauir J, Said SI. Co-localization of vasoactive intestinal peptide-and substance P-containing nerves in cat bronchi. Neurosci 1988; 24: 275–281.

    Article  CAS  Google Scholar 

  133. Said S, Dey RD. VIP in the airways. In: Kaliner M, Barnes PJ, editors. The airways. Neural control in health and disease. New York, Basel: Marcel Dekker, Inc., 1988; 395–416.

    Google Scholar 

  134. Shimosegawa T, Foda HD, Said SI. [MET]Enkephalin-arg6-gly7-leu8-immunoreactive nerves in guinea-pig and rat lungs: Distribution, origin, and co-existence with vasoactive intestinal polypeptide immunoreactivity. Neurosci 1990; 36: 737–750.

    Article  CAS  Google Scholar 

  135. Kalubi B, Yamano M, Ohhata K, Matsunaga T, Tohyama M. Presence of VIP fibres of sensory origin in the rat trachea. Brain Res 1990; 522: 107–111.

    Article  PubMed  CAS  Google Scholar 

  136. Krekel J, Weihe E, Nohr D, Yanaihara N, Weber E. Distribution of met-enkephalyl-arggly-leu in rat larynx: partial coexistence with vasoactive intestinal polypeptide, peptide histidine isoleucine and neuropeptide Y. Neurosci Lett 1990; 119: 64–67.

    Article  PubMed  CAS  Google Scholar 

  137. Dey RD, Altemus JB, Michalkiewicz M. Distribution of vasoactive intestinal peptide-and substance P-containing nerves originating from neurones of airways ganglia in cat bronchi. J Comp Neurol 1991; 304: 330–340.

    Article  PubMed  CAS  Google Scholar 

  138. Domeij S, Dahlqvist A, Forsgren S. Studies on colocalization of neuropeptide Y, vasoactive intestinal polypeptide, catecholamine-synthesizing enzymes and acetyl-cholinesterase in the larynx of the rat. Cell Tissue Res 1991; 263: 495–505.

    Article  PubMed  CAS  Google Scholar 

  139. Bowden JJ, Gibbins IL. Colocalisation of neurotransmitters in autonomic neurones supplying the respiratory tract of various species, including humans. Am Rev Respir Dis 1992; 145 (abstract): A259.

    Google Scholar 

  140. Fischer A, Mündel P, Mayer B, Preissler U, Philippin B, Kummer W. Nitric oxide synthase in guinea-pig lower airways innervation. Neurosci Lett 1993; 149: 157–160.

    Article  PubMed  CAS  Google Scholar 

  141. Dey RD, Mayer B, Said SI. Colocalization of vasoactive intestinal peptide and nitric oxide synthase in neurones of the ferret trachea. Neuroscience 1993; 54: 839–843.

    Article  PubMed  CAS  Google Scholar 

  142. Springall D, Buttery LKD, Hislop AA, Riveros-Moreno V, Moncada S, Haworth SG, Polak JM. Nitric oxide synthase immunoreactive nerves in pig lung decrease during postnatal development. Am Rev Respir Dis 1993; 147: A939.

    Google Scholar 

  143. Fischer A, Hoffman B, Hauser-Kronberger, Mayer B, Kummer W. Nitric oxide synthase in the innervation of the human respiratory tract. Am Rev Respir Dis 1993; 147: A662.

    Google Scholar 

  144. Luts A, Sundler F. Peptide containing nerve fibres in the respiratory tract of the ferret. Cell Tissue Res 1989; 258: 259–267.

    Article  PubMed  CAS  Google Scholar 

  145. Dey R, Zhu W. Origin of galanin nerves of cat airways and colocalization with vasoactive intestinal peptide. Cell Tissue Res 1993; 273: 193–200.

    Article  PubMed  CAS  Google Scholar 

  146. Canning BJ, Undem BJ. Antidromic stimulation of vagal afferents elicits excitation of NANC inhibitory neurones innervating guinea-pig trachealis. J Physiol 1994; In Press.

    Google Scholar 

  147. Komatsu T, Yamamoto M, Shimokata K, Nagura H. Distribution of substance Pimmunoreactive and calcitonin gene-related peptide-immunorective nerves in normal human lungs. Int Arch Allergy Appl Immunol 1991; 95: 23–28.

    Article  PubMed  CAS  Google Scholar 

  148. Myers AC, Undem BJ. Electrophysiological effects of tachykinins and capsaicin on guinea-pig bronchial parasympathetic ganglion neurones. J Physiol 1993; 470: 665– 679.

    PubMed  CAS  Google Scholar 

  149. Coburn RF, Kalia MP. Morphological features of spiking and nonspiking cells in the paratracheal ganglion of the ferret. J Comp Neurol 1986; 254: 341–351.

    Article  PubMed  CAS  Google Scholar 

  150. Mitchell HW, Coburn RF. Multiple motor pathways to single smooth muscle cells in the ferret trachea. J Physiol 1992; 456: 557–574.

    PubMed  CAS  Google Scholar 

  151. Jacobowitz DG, Kent KM, Fleisch JH, Cooper T. Histofluorescent study of catecholamine-containing elements in cholinergic ganglia from the calf and dog lung. Proc Soc Exp Biol Med 1973; 144: 464–466.

    PubMed  CAS  Google Scholar 

  152. Partanen M, Laitinen A, Hervonen A, Toivanen M, Laitinen LA. Catecholamine-and acetylcholinesterase-containing nerves in human lower respiratory tract. Histochemistry 1982; 76: 175–188.

    Article  PubMed  CAS  Google Scholar 

  153. Myers AC, Undem BJ, Weinreich D. Influence of antigen on membrane properties of guinea-pig bronchial ganglion neurones. J Appl Physiol 1991; 71: 970–976.

    PubMed  CAS  Google Scholar 

  154. Allen TGJ, Burnstock G. A voltage-clamp study of the electrophysiological characteristics of the intramural neurones of the rat trachea. J Physiol 1990; 423–614.

    Google Scholar 

  155. Allen TGJ, Burnstock G. GABAA receptor-mediated increase in membrane chloride conductance in rat paratracheal neurones. Br J Pharmacol 1990; 100: 261–268.

    PubMed  CAS  Google Scholar 

  156. Aibara K, Akaike N. Acetylcholine-activated ionic currents in isolated paratracheal ganglion cells of the rat. Brain Res 1991; 558: 20–26.

    Article  PubMed  CAS  Google Scholar 

  157. Aibara K, Ebihara S, Akaike N. Voltage-dependent ionic currents in dissociated paratracheal ganglion cells of the rat. J Physiol 1992; 457: 591–610.

    PubMed  CAS  Google Scholar 

  158. Itabashi S, Aibara K, Sasaki H, Akaike N. γ-aminobutyric acid-induced response in rat dissociated paratracheal ganglion cells. J Neurophysiol 1992; 67: 1367–1374.

    PubMed  CAS  Google Scholar 

  159. Reekie FM, Burnstock G. Effects of noradrenaline on rat paratracheal neurones and localization of an endogenous source of noradrenaline. Br J Pharmacol 1992; 107: 471–475.

    PubMed  CAS  Google Scholar 

  160. Baker DG, Basbaum CB, Herbert DA, Mitchell RA. Transmission in airways ganglia of ferrets: inhibition by norepinephrine. Neurosci Lett 1983; 41: 139–143.

    Article  PubMed  CAS  Google Scholar 

  161. Myers AC, Undem BJ. Analysis of preganglionic nerve evoked cholinergic contractions of the guinea-pig bronchus. J Auton Nerv Sys 1991; 35: 175–184.

    Article  CAS  Google Scholar 

  162. Bloom JW, Baumgartener-Folkerts C, Palmer JD, Yamamura HI, Halonen M. A muscarinic receptor subtype modulates vagally stimulated bronchial contraction. J Appl Physiol 1988; 65: 2144–2150.

    PubMed  CAS  Google Scholar 

  163. Skoogh B-E. Effect of barbiturates on transmission through airways ganglia. Eur J Respir Dis 1983; 131: 159–170.

    CAS  Google Scholar 

  164. Skoogh B-E. Parasympathetic ganglia in the airways. Bull Eur Physiopathol Respir 1986; 22: 143–147.

    PubMed  CAS  Google Scholar 

  165. Skoogh B-E. Airways parasympathetic ganglia. In: Kaliner M, Barnes PJ, editors. The airways: Neural control in health and disease. New York, Basel: Marcel Dekker, Inc., 1988: 217–240.

    Google Scholar 

  166. Granit R, Kernell D, Smith RS. Delayed depolarisation and the repetitive response to intracellular stimulation of mammalian motoneurones. J Physiol 1963; 168: 890–910.

    PubMed  CAS  Google Scholar 

  167. Griffith WH III, Gallagher JP, Shinnick-Gallagher JP. An intracellular investigation of cat vesical pelvic ganglia. J Neurophysiol 1980; 43: 343–354.

    PubMed  Google Scholar 

  168. Minota S, Kuba K. Restoration of the nicotinic receptor-channel activity from the blockade by atropine in bullfrog sympathetic ganglia. Brain Res 1984; 296: 194–197.

    Article  PubMed  CAS  Google Scholar 

  169. Sadoshima J-I, Oyama Y, Akaike N. Inhibition of nicotinic acetylcholine response by atropine in frog isolated sympathetic neurones. Brain Res 1990; 508: 147–151.

    Article  PubMed  CAS  Google Scholar 

  170. Eccles RM, Libet B. Origin and blockade of the synaptic responses of curarized sympathetic ganglia. J Physiol 1961; 157: 484–503.

    PubMed  CAS  Google Scholar 

  171. North RA, Tokimasa T. Muscarinic synaptic potentials in guinea-pig myenteric plexus neurones. J Physiol 1982; 333: 151–156.

    PubMed  CAS  Google Scholar 

  172. Allen TGJ, Burnstock G. Mj and M2 muscarinic receptors mediate excitation and inhibition of guinea-pig intracardiac neurones in culture. J Physiol 1990; 422: 463–480.

    PubMed  CAS  Google Scholar 

  173. Xi-Moy SX, Randall WC, Wurster RD. Nicotinic and muscarinic synaptic transmission in canine intracardiac ganglion cells innervating the sinoatrial node. J Auton Nerv Syst 1993; 42: 201–214.

    Article  PubMed  CAS  Google Scholar 

  174. Yang Z-J, Biggs DF. Muscarinic receptors and parasympathetic neurotransmission in guinea-pig trachea. Eur J Pharmacol 1991; 193: 301–308.

    Article  PubMed  CAS  Google Scholar 

  175. Lammers J-W, Minette JP, McCusker M, Barnes PJ. The role of pirenzepine-sensitive (Mj) muscarinic receptors in vagally mediated bronchoconstriction in humans. Am Rev Respir Dis 1989; 139: 446–449.

    Article  PubMed  CAS  Google Scholar 

  176. Ashe JH, Yarosh CA. Differential and selective antagonism of the slow-inhibitory postsynaptic potential and slow-excitatory postsynaptic potential by gallamine and pirenzepine in the superior cervical ganglion of the rabbit. Neuropharmacol 1984; 23: 1321–1329.

    Article  CAS  Google Scholar 

  177. Mukaiyama O, Takeuchi A, Kimura T, Satoh S. Effects of pirenzepine and AF-DX 116 on ganglionic transmission in the cardiac sympathetic nerves of the dog: Interaction of M, and M2 receptors with nicotinic receptors. J Pharmacol Exp Ther 1991; 256: 525–529.

    PubMed  CAS  Google Scholar 

  178. Blanquet F, Gonella J. Role of Mi muscarinic receptors in the parasympathetic control of colonic motility in cats and rabbits. J Physiol 1992; 458: 655–666.

    PubMed  CAS  Google Scholar 

  179. Gardner TD, Potter EK. Dependence of non-adrenergic inhibition of cardiac vagal action on peak frequency of sympathetic stimulation in the dog. J Physiol 1988; 405: 115–122.

    PubMed  CAS  Google Scholar 

  180. Baker DG, Mitchell RA, Herbert DA. Control of airways smooth muscle: Role of the sympathetic nervous system. In: Whipp BJ, Wiberg DM, editors. Modelling and control of breathing. Elsevier Science Publishing Co., Inc., 1983: 150–157.

    Google Scholar 

  181. Baker DG, Don H. Catecholamines abolish vagal but not acetylcholine tone in the intact cat trachea. J Appl Physiol 1987; 63: 2490–2498.

    PubMed  CAS  Google Scholar 

  182. Baluk P, Gabella G. Tracheal parasympathetic neurones of rat, mouse and guinea-pig: partial expression of noradrenergic phenotype and lack of innervation from noradrenergic nerve fibres. Neurosci Lett 1989; 102: 191–196.

    Article  PubMed  CAS  Google Scholar 

  183. Baker DG, McDonald DM. Distribution of catecholamine-containing nerves on blood vessels of the rat trachea. J Comp Neurol 1992; 325–46.

    Google Scholar 

  184. Grundström N, Andersson RGG, Wikberg JES. Prejunctional α2-adrenoceptors inhibit contraction of tracheal smooth muscle by inhibiting cholinergic neurotransmission. Life Sci 1981; 28: 2981–2986.

    Article  PubMed  Google Scholar 

  185. Widmark E, Waldeck B. Physiological and pharmacological characterization of an in vitro vagus nerve-trachea preparation from guinea-pig. J Auton Pharmacol 1987; 6: 187–194.

    Google Scholar 

  186. Grundemar WE, Waldeck B, Håkanson R. Neuropeptide Y: prejunctional inhibition of vagally-induced contraction in the guinea-pig trachea. Regul Peptides 1988; 23: 309–314.

    Article  CAS  Google Scholar 

  187. Stretton CD, Barnes PJ. Modulation of cholinergic neurotransmission in guinea-pig trachea by neuropeptide Y. Br J Pharmacol 1988; 93: 672–678.

    PubMed  CAS  Google Scholar 

  188. Thompson DC, Diamond L, Altiere RJ. Presynaptic α-adrenoceptor modulation of neurally mediated cholinergic excitatory and nonadrenergic noncholinergic inhibitory responses in guinea-pig trachea. J Pharmacol Exp Ther 1990; 254: 306–311.

    PubMed  CAS  Google Scholar 

  189. Vermeire PA, Vanhoutte PM. Inhibitory effects of catecholamines in isolated canine bronchial smooth muscle. J Appl Physiol 1979; 46: 787–791.

    PubMed  CAS  Google Scholar 

  190. Danser AHJ, Ende RVD, Lorenz RR, Flavahan NA, Vanhoutte PM. Prejunctional ß1-adrenoceptors inhibit cholinergic transmission in canine bronchi. J Appl Physiol 1987; 62: 785–790.

    PubMed  CAS  Google Scholar 

  191. Grieco MH, Pierson RN. Mechanism of bronchoconstriction due to beta-adrenergic blockade. J Allergy Clin Immunol 1971; 48: 143–152.

    Article  PubMed  CAS  Google Scholar 

  192. McCaig DJ. Effects of sympathetic stimulation and applied catecholamines on mechanical and electrical responses to stimulation of the vagus nerve in guinea-pig isolated trachea. Br J Pharmacol 1987; 91: 385–394.

    PubMed  CAS  Google Scholar 

  193. Hills JM, Jessen KR. Transmission: γ-aminobutyric acid (GABA) 5-hydroxytryptamine (5-HT) and dopamine. In: Burnstock G, Hoyle CHV, editors. Autonomic neuroeffector mechanisms. United Kingdom: Harwood Academic Publishers, 1992; 465–507.

    Google Scholar 

  194. Grider JR, Makhlouf, GM. Enteric GABA: mode of action and role in the regulation of the peristaltic reflex. Am J Physiol 1992; 262: G690–G694.

    PubMed  CAS  Google Scholar 

  195. Shirakawa J, Taniyama K, Tanaka C. γ-aminobutyric acid-induced modulation of acetylcholine release from the guinea-pig lung. J Pharmacol Exp Ther 1987; 243: 364–369.

    PubMed  CAS  Google Scholar 

  196. Chapman RW, Hey JA, Rizzo CA, Bolser Dc. GABAB receptors in the lung. Trends Pharmacol Sci 1993; 14: 26–27.

    Article  PubMed  CAS  Google Scholar 

  197. Auer J, Lewis PA. The physiology of the immediate reaction of anaphylaxis in the guinea-pig. J Exp Med 1910; 12: 151–175.

    Article  PubMed  CAS  Google Scholar 

  198. Schultz WH. Physiological studies in anaphylaxis. I. The reaction of smooth muscle of the guinea-pig sensitized with horse serum. J Pharmacol Exp Ther 1910; 1: 549–569.

    CAS  Google Scholar 

  199. Dale HH. The anaphylactic reaction of plain muscle in the guinea-pig. J Pharmacol Exp Ther 1913; 4: 167–223.

    CAS  Google Scholar 

  200. Adams GK, Lichtenstein L. In vitro studies of antigen-induced bronchospasm: Effect of antihistamine and SRS-A antagonist on response of sensitized guinea-pig and human airways to antigen. J Immunol 1979; 122: 555–562.

    PubMed  CAS  Google Scholar 

  201. Bochner BS, Lichtenstein LM. Anaphylaxis. New Eng J Med 1991; 324: 1785–1790.

    Article  PubMed  CAS  Google Scholar 

  202. Drazen JM. Adrenergic influences on histamine-mediated bronchoconstriction in the guinea-pig. J Appl Physiol 1978; 44: 340–345.

    PubMed  CAS  Google Scholar 

  203. Ichinose M, Stretton CD, Schwartz JC, Barnes PJ. Histamine H3-receptors inhibit cholinergic neurotransmission in guinea-pig airways. Br J Pharmacol 1989; 97: 13–15.

    PubMed  CAS  Google Scholar 

  204. Kikuchi Y, Okayama H, Ikayama M, Sasaki H, Takishima T. Interaction between histamine and vagal stimulation on tracheal smooth muscle in dogs. J Appl Physiol 1984; 56: 590–595.

    PubMed  CAS  Google Scholar 

  205. Miura M, Ichinose M, Kimura K, Katsumata U, Takahashi T, Inoue H, Takishima T. Dysfunction of nonadrenergic noncholinergic inhibitory system after antigen inhalation in actively sensitized cat airways. Am Rev Respir Dis 1992; 145: 70–74.

    Article  PubMed  CAS  Google Scholar 

  206. McCaig DJ. Comparison of autonomic responses in the trachea isolated from normal and ablumin-sensitized guinea-pigs. Br J Pharmacol 1987; 92: 809–816.

    PubMed  CAS  Google Scholar 

  207. Yang Z-J, Biggs DF. Muscarinic receptor functioning in tracheas from normal and ovalbumin-sensitive guinea-pigs. Can J Physiol Pharmacol 1991; 69: 871–876.

    Article  PubMed  CAS  Google Scholar 

  208. Fryer AD, Wills-Karp M. Dysfunction of M2-muscarinic receptors in pulmonary parasympathetic nerves after antigen challenge. J Appl Physiol 1991; 71: 2255–2261.

    PubMed  CAS  Google Scholar 

  209. Myers AC, Undem BJ. Antigen depolarizes guinea-pig bronchial parasympathetic ganglion neurones by activation of histamine H, receptors. Am Rev Respir Dis 1993; 147: A501.

    Google Scholar 

  210. Lundberg JM, Saria A. Bronchial smooth muscle contraction induced by stimulation of capsaicin-sensitive sensory neurones. Acta Physiol Scand 1982; 116: 473–476.

    Article  PubMed  CAS  Google Scholar 

  211. Ray DW, Hernandez C, Leff AR, Drazen JM, Solway J. Tachykinins mediate bron-choconstriction elicited by isocapnic hyperpnea in guinea-pigs. J Appl Physiol 1989; 66: 1108–1112.

    PubMed  CAS  Google Scholar 

  212. Satoh H, Lou Y-P, Lee L-Y, Lundberg JM. Inhibitory effects of capsazepine and the NK2 antagonist SR 48968 on bronchoconstriction evoked by sensory nerve stimulation in guinea-pigs. Acta Physiol Scand 1992; 146: 535–536.

    Article  PubMed  CAS  Google Scholar 

  213. Maggi CA. The pharmacology of the efferent function of sensory nerves. J Auton Pharmacol 1991; 11: 173–208.

    Article  PubMed  CAS  Google Scholar 

  214. Lundberg JM, Saria A. Capsaicin-induced desensitization of airways mucosa to cigarette smoke, mechanical and chemical irritants. Nature 1983; 302: 251–253.

    Article  PubMed  CAS  Google Scholar 

  215. McDonald DM. Neurogenic inflammation in the rat trachea. I. Changes in venules, leukocytes and epithelial cells. J Neurocytol 1988; 17: 605–628.

    Article  PubMed  CAS  Google Scholar 

  216. Umeno E, McDonald DM, Nadel JA. Hypertonic saline increases vascular permeability in the rat trachea by producing neurogenic inflammation. J Clin Invest 1990; 85: 1905–1908.

    Article  PubMed  CAS  Google Scholar 

  217. Garland A, Ray DW, Doerschuk CM, Alger L, Eappon S, Hernandez C, Jackson M, Solway J. Role of tachykinins in hyperpnea-induced bronchovascular hyperpermeability in guinea-pigs. J Appl Physiol 1991; 70: 27–35.

    PubMed  CAS  Google Scholar 

  218. Piedimonte G, Hoffman JIE, Husseini WK, Hiser WL, Nadel JA. Effect of neuropeptides released from sensory nerves on blood flow in the rat airways microcirculation. J Appl Physiol 1992; 72: 1563–1570.

    PubMed  CAS  Google Scholar 

  219. Ito T, Takubo T, Hussain S, Martin JG. A peptidergic component to vagally induced tracheal vasodilation in the dog. J Appl Physiol 1992; 73: 1102–1107.

    PubMed  CAS  Google Scholar 

  220. Pisarri TE, Coleridge JCG, Coleridge HM. Capsaicin-induced bronchial vasodilation in dogs: central and peripheral neural mechanisms. J Appl Physiol 1993; 74: 259–266.

    PubMed  CAS  Google Scholar 

  221. Umeno E, Nadel JA, McDonald DM. Neurogenic inflammation of the rat trachea: fate of neutrophils that adhere to venules. J Appl Physiol 1990; 69: 2131–2136.

    PubMed  CAS  Google Scholar 

  222. Tokuyama K, Kuo H-P, Rhode JAL, Barnes PJ, Rogers DF. Neural control of goblet cell secretion in guinea-pig airways. Am J Physiol 1990; 259: L108–L115.

    PubMed  CAS  Google Scholar 

  223. Kuo H-P, Rhode JAL, Tokuyama K, Barnes PJ, Rogers DF. Capsaicin and sensory neuropeptide stimulation of goblet cell secretion in guinea-pig trachea. J Physiol 1990; 431: 629–641.

    PubMed  CAS  Google Scholar 

  224. Prechtl J, Prowley TL. B-afferents: A fundamental division of the nervous system mediating homeostasis? Behav Brain Sci 1990; 13: 289–331.

    Article  Google Scholar 

  225. Piedimonte G, Hoffman JIE, Husseini WK, Snider RM, Desai MC, Nadel JA. NK, receptors mediate neurogenic inflammatory increase in blood flow in rat airways. J Appl Physiol 1993; 74: 2462–2468.

    PubMed  CAS  Google Scholar 

  226. Renzetti LM, Shenvi A, Buckner CK. Nonadrenergic, noncholinergic contractile responses of the guinea-pig hilar bronchus involve the preferential activation of tachykinin neurokinin2 receptors. J Pharmacol Exp Ther 1992; 262: 957–963.

    PubMed  CAS  Google Scholar 

  227. Martin CAE, Naline E, Emonds-Alt X, Advenier C. Influence of (±)-CP-96,345 and SR 48968 on electrical field stimulation of the isolated guinea-pig main bronchus. Eur J Pharmacol 1992; 224: 137–143.

    Article  PubMed  CAS  Google Scholar 

  228. Lundberg JM, Hökfelt T, Martling C-R, Saria A, Cuello C. Substance P-immunoreactive sensory nerves in the lower respiratory tract of various mammals including man. Cell Tissue Res 1984; 235: 251–261.

    Article  PubMed  CAS  Google Scholar 

  229. Watson N, Maclagan J, Barnes PJ. Endogenous tachykinins facilitate transmission through parasympathetic ganglia in guinea-pig trachea. Br J Pharmacol 1993; 109: 751–759.

    PubMed  CAS  Google Scholar 

  230. Martling C-R, Saria A, Anderson P, Lundberg JM. Capsaicin pretreatment inhibits vagal cholinergic and non-cholinergic control of pulmonary mechanics in the guinea-pig. Naunyn-Schmeideberg’s Arch Pharmacol 1984; 325–348.

    Google Scholar 

  231. Myers AC, Undem BJ. Functional interactions between capsaicin-sensitive and cholinergic nerves in the guinea-pig bronchus. J Pharmacol Exp Ther 1991; 259: 104–109.

    PubMed  CAS  Google Scholar 

  232. Stimler-Gerard NP. Neutral endopeptidase-like enzyme controls the contractile activity of substance P in guinea-pig lung. J. Clin Invest 1987; 79: 1819–1825.

    Article  PubMed  CAS  Google Scholar 

  233. Sekizawa K, Tamaoki J, Nadel JA, Borson DB. Enkephalinase inhibitor potentiates substance P and electrically induced contraction in ferret trachea. J Appl Physiol 1987; 63: 1401–1405.

    PubMed  CAS  Google Scholar 

  234. Tanaka DT, Grunstein MM. Mechanisms of substance P-induced contraction of rabbit airways smooth muscle. J Appl Physiol: 1984; 57: 1551–1557.

    PubMed  CAS  Google Scholar 

  235. Kuntz A, Saccomanno G. Reflex inhibition of intestinal motility mediated through decentralized prevertebral ganglia. J Neurophysiol 1944; 7: 163–170.

    Google Scholar 

  236. Bayliss WM, Starling EH. The movements and innervation of the small intestine. J Physiol 1899; 24: 99–143.

    PubMed  CAS  Google Scholar 

  237. Bayliss WM, Starling EH. The movements and the innervation of the large intestine. J Physiol 1900; 26: 107–118.

    PubMed  CAS  Google Scholar 

  238. Gabella G. Innervation of airways smooth muscle: Fine structure. Ann Rev Physiol 1987; 49: 583–594.

    Article  CAS  Google Scholar 

  239. Gabella G. Fine structure of post-ganglionic nerve fibres and autonomic neuro-effector junctions. In: Burnstock G, Hoyle CHV, editors. Autonomic neuroeffector mechanisms. United Kingdom: Harwood Academic Publishers, 1992: 1–31.

    Google Scholar 

  240. Hillarp N-A. The construction and functional organization of the autonomic innervation apparatus. Acta Physiol Scand 1959; 46: 1–38.

    Google Scholar 

  241. Robinson PM, McLean JR, Burnstock G. Ultrastructural identification of non-adrenergic inhibitory nerve fibres. J Pharmacol Exp Ther 1971; 179: 149–160.

    PubMed  CAS  Google Scholar 

  242. Richardson JB, Ferguson CC. Neuromuscular structure and function in the airways. Fed Proc 1979; 38: 202–208.

    PubMed  CAS  Google Scholar 

  243. Jones TR, Kannan MS, Daniel EE. Ultrastructural study of guinea-pig tracheal smooth muscle and its innervation. Can J Physiol Pharmacol 1980; 58: 974–983.

    Article  PubMed  CAS  Google Scholar 

  244. Hoyes AD, Barber P. Innervation of the trachealis muscle in the guinea-pig: a quantitative ultrastructural study. J Anat 1980; 130: 789–800.

    PubMed  CAS  Google Scholar 

  245. Pack RJ, Al-Ugaily LH, Widdicombe JG. The innervation of the trachea and extrapulmonary bronchi of the mouse. Cell Tissue Res 1984; 238: 61–68.

    Article  PubMed  CAS  Google Scholar 

  246. Daniel EE, Kannan M, Davis C, Posey-Daniel V. Ultrastructural studies on the neuromuscular control of human tracheal and bronchial muscle. Respir Physiol 1986; 63: 109–128.

    Article  PubMed  CAS  Google Scholar 

  247. Burnstock G. Autonomic neural control mechanisms -with special reference to the airways. In: Kaliner MA, Barnes PJ, editors. The airways -Neural control in health and disease. New York, Basel: Marcel Dekker, Inc., 1988: 1–22.

    Google Scholar 

  248. Daniel EE. Control of airways smooth muscle. In: Kaliner MA, Barnes PJ, editors. The airways -neural control in health and disease. New York, Basel: Marcel Dekker, Inc., 1988: 485–521.

    Google Scholar 

  249. Hirst GDS, Bramich NJ, Edwards FR, Klemm M. Transmission at autonomic neuro-effector junctions. Trends Neurosci 1992; 15: 40–46.

    Article  PubMed  CAS  Google Scholar 

  250. Romero PV, Ludwig MS. Maximal methacholine-induced constriction in rabbit lung: interactions between airways and tissue? J Appl Physiol 1991; 70: 1044–1050.

    PubMed  CAS  Google Scholar 

  251. Taylor SM, Pare PD, Schellenberg RR. Cholinergic and nonadrenergic mechanisms in human and guinea-pig airways. J Appl Physiol 1984; 56: 958–965.

    Article  PubMed  CAS  Google Scholar 

  252. Itabashi S, Aikawa T, Sekizawa K, Ohrui T, Sasaki H, Takishimi T. Pre-and postjunctional muscarinic receptor subtypes in dog airways. Eur J Pharmacol 1991; 204: 235–241.

    Article  PubMed  CAS  Google Scholar 

  253. Van Oostergout AJM, Hofman G, Nijnanten FMAW-V, Mijkamp FP. 5-HT1-like receptors mediate potentiation of cholinergic nerve-mediated contraction of isolated mouse trachea. Eur J Pharmacol 1991; 209: 237–244.

    Article  Google Scholar 

  254. Szarek JL, Zhang JZ, Gruetter CA. 5-HT2 receptors augment cholinergic nerve-mediated contraction of rat bronchi. Eur J Pharmacol 1993; 231: 339–346.

    Article  PubMed  CAS  Google Scholar 

  255. McCaig DJ. Electrophysiology of neuroeffector transmission in the isolated, innervated trachea of the guinea-pig. Br J Pharmacol 1986; 89: 793–801.

    PubMed  CAS  Google Scholar 

  256. Barnes PJ, Baraniuk JN, Belvisi MG. Neuropeptides in the respiratory tract. Part I. Am Rev Respir Dis 1991; 144: 1187–1198.

    Article  PubMed  CAS  Google Scholar 

  257. Ellis JL, Undem BJ. Non-adrenergic, non-cholinergic contractions in the electrically field stimulated guinea-pig trachea. Br J Pharmacol 1990; 101: 875–880.

    PubMed  CAS  Google Scholar 

  258. Leff AR, Munoz NM, Tallet J, David AC, Cavigelli MA, Garrity ER. Autonomic response characteristics of porcine airways smooth muscle in vivo. J Appl Physiol 1985; 58: 1176–1188.

    PubMed  CAS  Google Scholar 

  259. Sneddon P, Westfall DP. Pharmacological evidence that adenosine triphosphate and noradrenaline are co-transmitters in the guinea-pig vas deferens. J Physiol 1984; 347: 561–580.

    PubMed  CAS  Google Scholar 

  260. Diamond L, Altiere RJ. Airways nonadrenergic noncholinergic inhibitory nervous system. In: Kaliner M, Barnes PJ, editors. The airways neural control in health and disease. New York. Basel.: Marcel Dekker, 1988: 343–394.

    Google Scholar 

  261. Aikawa T, Sekizawa K, Itabashi S, Sasaki H, Takishima T. Nonadrenergic inhibitory nerves attentuate neurally mediated contraction in cat bronchi. J Appl Physiol 1990; 69: 1594–1598.

    PubMed  CAS  Google Scholar 

  262. Belvisi MG, Miura M, Stretton D, Barnes PJ. Endogenous vasoactive intestinal peptide and nitric oxide modulate cholinergic neurotransmission in guinea-pig trachea. Eur J Pharmacol 1993; 231: 97–102.

    Article  PubMed  CAS  Google Scholar 

  263. Sekizawa K, Tamaoki J, Graf PD, Nadel JA. Modulation of cholinergic neurotransmission by vasoactive intestinal peptide in ferret trachea. J Appl Physiol 1988; 64: 2433– 2437.

    PubMed  CAS  Google Scholar 

  264. Ellis JL, Farmer SG. Modulation of cholinergic neurotransmission by vasoactive intestinal peptide and peptide histidine isoleucine in guinea-pig tracheal smooth muscle. Pulm Pharmacol 1989; 2: 107–112.

    Article  PubMed  CAS  Google Scholar 

  265. Hakoda H, Ito Y. Modulation of cholinergic neurotransmission by the peptide VIP, VIP antiserum and VIP antagonists in dog and cat trachea. J Physiol 1990; 428: 133–154.

    PubMed  CAS  Google Scholar 

  266. Xie Z, Hirose T, Hakoda H, Ito Y. Effects of vasoactive intestinal polypeptide antagonists on cholinergic neurotransmission in dog and cat trachea. Br J Pharmacol 1991; 104: 938–944.

    PubMed  CAS  Google Scholar 

  267. Lundberg JM. Evidence for coexistence of vasoactive intestinal polypeptide (VIP) and acetylcholine in neurones of cat exocrine glands -Morphological, biochemical and functional studies. Acta Physiol Scand (supplement) 1981; 496: 1–57.

    CAS  Google Scholar 

  268. Don H, Baker DG, Richardson CA. Absence of nonadrenergic noncholinergic relaxation in the cat cervical trachea. J Appl Physiol 1988; 65: 2524–2530.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Canning, B.J., Undem, B.J. (1994). Parasympathetic Innervation of Airways Smooth Muscle. In: Raeburn, D., Giembycz, M.A. (eds) Airways Smooth Muscle. Respiratory Pharmacology and Pharmacotherapy. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7558-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7558-5_3

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7560-8

  • Online ISBN: 978-3-0348-7558-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics