Skip to main content

Vagal Reflexes

  • Chapter
Airways Smooth Muscle

Abstract

It is almost a truism to say that all motor outputs of the autonomic nervous system will be affected by every sensory input, and certainly a true statement if the latter are strong. Thus it is not surprising that a very large number of sensory inputs to the central nervous system affect tracheobronchial smooth muscle tone. These reflexes have been studied mainly in experimental animals with inputs made as pure as possible, and motor responses isolated from complicating factors. However in real life such primary reflexes rarely occur. An afferent input is seldom pure, and motor responses other than those of airways smooth muscle will set up secondary responses. To take an example, inflation of the lungs will stimulate at least three types of afferent endorgan, all of which affect bronchomotor tone; other motor responses will include changes in ventilatory drive and blood gas tensions, which will have secondary reflex effects on the airways smooth muscle. In addition the central nervous connections of the reflexes can be tuned in various ways, including by psychological factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coleridge HM, Coleridge JCG, Schultz HD. Afferent pathways involved in reflex regulation of airway smooth muscle. Pharmacol Ther 1989; 42: 1–63.

    PubMed  CAS  Google Scholar 

  2. Coleridge JCG, Coleridge HM. Afferent vagal C-fiber innervation of the lungs and airways and its functional significance. Rev Physiol Biochem Pharmacol 1984; 99: 1–110.

    PubMed  CAS  Google Scholar 

  3. Karlsson J-A, Sant’Ambrogio G, Widdicombe JG. Afferent neural pathways in cough and reflex bronchoconstriction. J Appl Physiol 1988; 65: 1007–1023.

    PubMed  CAS  Google Scholar 

  4. Widdicombe JG. Regulation of tracheobronchial smooth muscle. Physiol Rev 1963; 43: 1–37.

    PubMed  CAS  Google Scholar 

  5. Widdicombe JG, Karlsson J-A, Barnes PJ. Cholinergic mechanisms in bronchial hyper-responsiveness and asthma. In: Kaliner MA, Barnes PJ, Persson CGA (eds.): Asthma: Its pathology and treatment. New York: Dekker, 1991; pp. 327–356.

    Google Scholar 

  6. Widdicombe JG. Reflexes from the upper respiratory tract. In: Cherniack NS, Widdi-combe JG (eds.): Handbook of Physiology, Section 3, The Respiratory System, Volume II, Control of Breathing Part I. Bethesda MD: American Physiology Society, 1986; pp. 363–394.

    Google Scholar 

  7. Tomori Z, Widdicombe JG. Muscular, bronchomotor and cardiovascular reflexes elicited by mechanical stimulation of the respiratory tract. J Physiol 1969; 200: 25–49.

    PubMed  CAS  Google Scholar 

  8. Widdicombe JG. Action potentials in parasympathetic and sympathetic efferent fibres to the trachea and lungs of dogs and cats. J Physiol 1966; 186: 56–88.

    PubMed  CAS  Google Scholar 

  9. Sercer A. Uber die Beeinflussung der Bronchien von der Nase. Arch Ohren Nasen Kehlkopfheilkd 1952; 161: 264–275.

    Google Scholar 

  10. Dylewska K, Sahin G, Widdicombe JG. Asymmetrie reflex responses to the nasal and tracheal vasculatures of the dog. J Appl Physiol 1993; 75: In Press.

    Google Scholar 

  11. Kaufman J, Wright GW. The effect of nasal and nasopharyngeal irritation on airway resistance in man. Am Rev Respir Dis 1969; 100: 626–630.

    PubMed  CAS  Google Scholar 

  12. Konno A, Togawa K, Itasaka Y, Hoshino T. Computer analysis of changes in pul-monary resistance induced by nasal stimulation in man. Eur J Respir Dis 1983; 64: 97–104.

    Google Scholar 

  13. Nolte D, Berger D. On vagal bronchoconstriction in asthmatic patients by nasal irritation. Eur J Respir Dis 1983; 64: 110–114.

    Google Scholar 

  14. Sato T. Effect of nasal mucosa irritation on airway resistance. Auris Nasus Larynx 1980; 7: 39–50.

    PubMed  CAS  Google Scholar 

  15. Miller MJ, DiFiore JM, Strohl KP, Martin RJ. Effects of nasal CPAP on supraglottic and total pulmonary resistance in preterm infants. J Appl Physiol 1990; 68: 141–146.

    PubMed  CAS  Google Scholar 

  16. Sullivan CE, Zamel N, Kozar LF, Murphy E, Phillipson EA. Regulation of airway smooth muscle tone in sleeping dogs. Am Rev Respir Dis 1979; 119: 87–99.

    PubMed  CAS  Google Scholar 

  17. Widdicombe JG. Respiratory reflexes from the trachea and bronchi of the cat. J Physiol 1954; 123: 55–70.

    PubMed  CAS  Google Scholar 

  18. Boushey HA, Richardson PD, Widdicombe JG. Reflex effects of laryngeal irritation on the pattern of breathing and total lung resistance. J Physiol 1972; 13: 224–501.

    Google Scholar 

  19. Coleridge JCG, Coleridge HM, Roberts AM, Kaufman MP, Baker GG. Tracheal contraction and relaxation initiated by lung and somatic afferents in dogs. J Appl Physiol 1982; 52: 984–990.

    PubMed  CAS  Google Scholar 

  20. Sullivan CE, Kozar LF, Murphy E, Phillipson EA. Arousal, ventilatory, and airway responses to bronchopulmonary stimulation in sleeping dogs. J Appl Physiol 1979; 47: 17–25.

    PubMed  CAS  Google Scholar 

  21. Widdicombe JG, Sant’Ambrogio G, Mathew OP. Nervous receptors of the upper airway. In: Mathew OP, Sant’Ambrogio G (eds.): Respiratory function of the upper airway. New York: Dekker, 1988; pp. 193–231.

    Google Scholar 

  22. Michoud M-C, Jeanneret-Grosjean A, Cohen A, Amyot R. Reflex decrease of histamine-induced bronchoconstriction after laryngeal stimulation in asthmatic patients. Am Rev Respir Dis 1988; 138: 1548–1552.

    PubMed  CAS  Google Scholar 

  23. Lammers J-WJ, Minette P, McCusker MT, Chung FK, Barnes PJ. Nonadrenergic bronchodilator mechanisms in normal human subjects in vivo. J Appl Physiol 1988; 64: 1817–1822.

    PubMed  CAS  Google Scholar 

  24. Szarek JL, Gillespie MN, Altiere RJ, Diamond I. Reflex activation of the nonadrenergic noncholinergic inhibitory nervous system in feline airways. Am Rev Respir Dis 1986; 133: 1159–1162.

    PubMed  CAS  Google Scholar 

  25. Kahn RH. Zur Physiologie der Trachea. Arch Anat Physiol 1907; 398–426.

    Google Scholar 

  26. Loofbourrow GN, Wood WB, Baird IL. Tracheal constriction in the dog. Am J Physiol 1957; 191: 411–415.

    PubMed  CAS  Google Scholar 

  27. Widdicombe JG, Nadel JA. Reflex effects of lung inflation on tracheal volume. J Appl Physiol 1963; 18: 681–686.

    PubMed  CAS  Google Scholar 

  28. Coleridge HM, Coleridge JCG. Reflexes evoked from the tracheobronchial tree and lungs. In: Cherniack NS, Widdicombe JG (eds.): Handbook of Physiology, 3. The respiratory system, Vol II, control of breathing. Bethesda: American Physiological Society, 1986; pp. 395–429.

    Google Scholar 

  29. Bowes GEJ, Shakin EA, Phillipson EA, Zamel N. An efferent pathway mediating reflex tracheal dilation in awake dogs. J Appl Physiol 1984; 57: 413–418.

    PubMed  CAS  Google Scholar 

  30. Mitchell RA, Herbert DA, Baker DG. Inspiratory rhythm in airway smooth muscle tone. J Appl Physiol 1985; 58: 911–920.

    PubMed  CAS  Google Scholar 

  31. Roberts AM, Coleridge HM, Coleridge JCG. Reciprocal action of pulmonary vagal afferents on tracheal smooth muscle tension in dogs. Respir Physiol 1988; 72: 35–46.

    PubMed  CAS  Google Scholar 

  32. Karczewski W, Widdicombe JG. The effect of vagotomy, vagal cooling and efferent vagal stimulation of breathing and lung mechanics of rabbits. J Physiol 1969; 201: 259–270.

    PubMed  CAS  Google Scholar 

  33. Brandt HD, Krivoy N, Bunn AE. A cholinergic dilatory reflex in canine airways. Life Sci 1987; 1–5.

    Google Scholar 

  34. Vidruk EH, Sorkness RL. Histamine-induced reflex tracheal constriction is attenuated by hyperoxia and exaggerated by hypoxia. Am Rev Respir Dis 1985; 132: 287–291.

    PubMed  CAS  Google Scholar 

  35. Vidruk EH. Hypoxia potentiates, oxygen attenuates deflation-induced reflex tracheal constriction. J Appl Physiol 1985; 59: 941–946.

    PubMed  CAS  Google Scholar 

  36. Sorkness RL, Vidruk EH. Ventilatory responses to hypoxia nullify hypoxic tracheal constriction in awake dogs. Respir Physiol 1986; 66: 41–52.

    PubMed  CAS  Google Scholar 

  37. Stein JF, Widdicombe JG. Interactions of reflexes from chemo-and pulmonary stretch receptors in control of airway calibre. J Physiol 1971; 216: 33–34.

    Google Scholar 

  38. Sant’Ambrogio G. Information arising from the tracheobronchial tree of mammals. Physiol Rev 1982; 62: 531–569.

    PubMed  Google Scholar 

  39. Widdicombe JG, Nadel JA. Airway volume, airway resistance, and work and force of breathing: theory. J Appl Physiol 1963; 18: 863–868.

    PubMed  CAS  Google Scholar 

  40. Widdicombe JG. Receptors in the trachea and bronchi of the cat. J Physiol 1954; 123: 71–104.

    PubMed  CAS  Google Scholar 

  41. Allott CP, Evans DP, Loveday BE, Marshall PW. A model of reflex tracheal constriction in the dog. Br J Pharmacol 1980; 70: 419–423.

    PubMed  CAS  Google Scholar 

  42. Nishino T, Sugimori K, Hiraga K, Honda Y. Effects of tracheal irritation and hypercapnia on tracheal smooth muscle in humans. J Appl Physiol 1990; 69: 419–423.

    PubMed  CAS  Google Scholar 

  43. Ravi K, Kappagoda CT. Reflex effects of pulmonary venous congestion: Role of vagal afferents. News in Physiol Sci 1990; 5: 95–99.

    Google Scholar 

  44. Kappagoda CT, Man GCW, Ravi K, Teo KK. Reflex tracheal contraction during pulmonary venous congestion in the dog. J Physiol 1988; 402: 335–346.

    PubMed  CAS  Google Scholar 

  45. Barer GR, Nusser E. The part played by bronchial muscles in pulmonary reflexes. Br J Pharmacol 1953; 8: 315–320.

    CAS  Google Scholar 

  46. Karczewski W, Widdicombe JG. The role of the vagus nerves in the respiratory and circulatory responses to intravenous histamine and phenyl diguanide in rabbits. J Physiol 1969; 201: 271–291.

    PubMed  CAS  Google Scholar 

  47. Russell JA, Lai-Fook SJ. Reflex bronchoconstriction induced by capsaicin in the dog. J Appl Physiol 1979; 47: 961–967.

    PubMed  CAS  Google Scholar 

  48. Roberts AM, Kaufman MP, Baker DG, Brown JK, Coleridge HM, Coleridge JCG. Reflex tracheal contraction induced by stimulation of bronchial C-fibres in dogs. J Appl Physiol 1981; 51: 485–493.

    PubMed  CAS  Google Scholar 

  49. Roberts AM, Hahn HL, Schultz HD, Nadel JA, Coleridge HM, Coleridge JCG. Afferent vagal C-fibers are responsible for the reflex airway constriction and secretion evoked by pulmonary administration of S02 in dogs. Physiologist 1982; 25: 226.

    Google Scholar 

  50. Jammes Y, Mei N. Assessment of the pulmonary origin of bronchoconstrictor vagal tone. J Physiol 1979; 291: 305–316.

    PubMed  CAS  Google Scholar 

  51. Nadel JA, Widdicombe JG. Reflex effects of upper airway irritation on total lung resistance and blood pressure. J Appl Physiol 1962; 17: 861–865.

    PubMed  CAS  Google Scholar 

  52. Winning AJ, Hamilton RD, Shea SÂ, Guz A. Respiratory and cardiovascular effects of central and peripheral intravenous injections of capsaicin in man: evidence for pul-monary chemosensitivity. Clin Sci 1986; 71: 519–526.

    PubMed  CAS  Google Scholar 

  53. Ichinose M, Inoue H, Miura M, Yafuso N, Nogami H, Takishima T. Possible sensory receptor of nonadrenergic inhibitory nervous system. J Appl Physiol 1987; 63: 923–929.

    PubMed  CAS  Google Scholar 

  54. Einthoven W. Ueber die Wirkung der Bronchialmuskel nach einer neuen Methode untersucht, und über das Asthma nervosum. Arch Ges Physiol 1892; 51: 367–445.

    Google Scholar 

  55. Roy CS, Brown G. On bronchial contraction. J Physiol 1885; 6: 21–25.

    Google Scholar 

  56. Dixon WE, Brodie TG. Contributions to the physiology of the lungs, I. The bronchial muscles, their innervation, and the action of drugs upon them. J Physiol 1903; 29: 97–173.

    PubMed  CAS  Google Scholar 

  57. Green M, Widdicombe JG. The effects of ventilation of dogs with different gas mixtures on airway calibre and lung mechanics. J Physiol 1966; 186: 363–381.

    PubMed  CAS  Google Scholar 

  58. Nadel JA, Widdicombe JG. Effect of changes in blood gas tensions and carotid sinus pressure on tracheal volume and total lung resistance to airflow. J Physiol 1962; 163: 13–33.

    PubMed  CAS  Google Scholar 

  59. Strohl KP, Norcia MP, Wolin AD, Haxhiu MA, van Lunteren E, Deal ECJr. Nasal and tracheal responses to chemical and somatic afferent stimulation in anesthetized cats. J Appl Physiol 1988; 65: 870–877.

    PubMed  CAS  Google Scholar 

  60. Deal ECJr, Haxhiu MA, Norcia MP, Mitra J, Cherniack NS. Influence of the ventral surface of the medulla on tracheal responses to C02. J Appl Physiol 1986; 61: 1091–1097.

    PubMed  Google Scholar 

  61. Waldron MA, Fisher JT. Differential effects of C02 and hypoxia on bronchomotor tone in the newborn dog. Respir Physiol 1988; 72: 271–282.

    PubMed  CAS  Google Scholar 

  62. Delpierre S, Jammes Y, Mei N, Mathiot MJ, Grimaud C. Mise en evidence de l’origine vagale reflexe des effets bronchoconstricteurs du C02 chez le chat. J Physiol, Paris 1980; 76: 889–891.

    CAS  Google Scholar 

  63. Sekizawa K, Yaniz M, Sakurai M, Kikichi R, Sasaki H, Takishima T. Effect of hypoxia on bronchial reactivity in dogs. Bull Eur Physiopathol Respir 1985; 21: 485–489.

    PubMed  CAS  Google Scholar 

  64. Butler J, Caro CG, Alcala R, DuBois AB. Physiological factors affecting airway resistance in normal subjects and in patients with obstructive respiratory disease. J Clin Invest 1960; 39: 584–591.

    PubMed  CAS  Google Scholar 

  65. van den Elshout FJJ, van Herwaarden CLA, Folgering HThM. Effects of hypercapnia and hypocapnia on respiratory resistance in normal and asthmatic subjects. Thorax 1991; 46: 28–32.

    PubMed  Google Scholar 

  66. Schultz HD, Pisarri TE, Coleridge HM, Coleridge JCG, Carotid sinus baroreceptors modulate tracheal smooth muscle tension in dogs. Circ Res 1987; 60: 337–345.

    PubMed  CAS  Google Scholar 

  67. Teo KK, Man GCW, Kappagoda CT. Reflex tracheal contraction in response to partial obstruction of mitral valve (MVO). Physiologist 1985; 28: 303.

    Google Scholar 

  68. Roberts AM, Wead WB, Kurz MA. Stimulation of left atrial stretch receptors in dogs causes reflex contraction of airway smooth muscle. Fed Proc 1986; 45: 315.

    Google Scholar 

  69. Lloyd TC. Reflex effects of left heart and pulmonary vascular distension on airways of dogs. J Appl Physiol 1980; 49: 620–626.

    PubMed  Google Scholar 

  70. Roberts AM, Schultz HD, Pisarri TE, Coleridge HM, Coleridge JCG. Contraction of airway smooth muscle evoked by activation of the coronary chemoreflex in dogs. Physiologist 1984; 27: 223.

    Google Scholar 

  71. Kaufman MP, Baker DG, Coleridge HM, Coleridge JCG. Stimulation by bradykinin of afferent vagal C-fibers with chemosensitive endings in the heart and aorta of the dog. Circ Res 1980; 46: 476–484.

    PubMed  CAS  Google Scholar 

  72. Roberts AM, Coleridge JCG, Coleridge HM, Kaufman MP, Baker DG. Prostacyclin stimulates vagal C-fibers with chemosensitive endings in the heart. Fed Proc 1980; 39: 839.

    Google Scholar 

  73. Baker DG, Coleridge JCG, Nerdrum T. Search for a cardiac nociceptor: stimulation by bradykinin of sympathetic afferent nerve endings in the heart of the cat. J Physiol 1980; 306: 519–536.

    PubMed  CAS  Google Scholar 

  74. Roberts AM, Pisarri TE, Schultz HD, Coleridge HM, Coleridge JCC. Reflex relaxation of airway smooth muscle evoked by chemical stimulation of cardiac sympathetic afferents in dogs. Fed Proc 1985; 44: 837.

    Google Scholar 

  75. Kaufman MP, Rybicki KJ. Muscular contraction reflexly relaxes tracheal smooth muscle in dogs. Respir Physiol 1984; 56: 61–72.

    PubMed  CAS  Google Scholar 

  76. Kaufman MP, Rybicki KJ, Mitchell JH. Hindlimb muscular contraction reflexly de-creases total pulmonary resistance in dogs. J Appl Physiol 1985; 59: 1521–1526.

    PubMed  CAS  Google Scholar 

  77. McCallister LW, McCoy KW, Connelly JC, Kaupman MP. Stimulation of groups III and IV phrenic afferents reflexly decreases total lung resistance in dogs. J Appl Physiol 1986; 61: 1346–1351.

    PubMed  CAS  Google Scholar 

  78. Kaufman MP, Ordway GA, Longhurst JC, Mitchell JH. Reflex relaxation of tracheal smooth muscle by thin-fiber muscle afferents in dogs. J Appl Physiol 1982; 243: 383–388.

    Google Scholar 

  79. Baker DG, Don H. Reversal of the relation between respiratory drive and airway tone in cats. Respir Physiol 1988; 73: 21–30.

    PubMed  CAS  Google Scholar 

  80. Padrid PA, Haselton JR, Kaufman MP. Ischemia potentiates the reflex bronchodilation evoked by static muscular contraction in dogs. Respir Physiol 1990; 81: 51–62.

    PubMed  CAS  Google Scholar 

  81. Overholt RH, Ashraf MM. Esophageal reflux as trigger in asthma. NY State J Med 1966; 66: 3030–3032.

    CAS  Google Scholar 

  82. Mansfield LE, Stein MR. Gastro-oesophageal reflux and asthma: a possible reflex mechanism. Ann Allergy 1978; 41: 224–226.

    PubMed  CAS  Google Scholar 

  83. Spaulding HS, Mansfield LE, Stein MR, Sellner JC, Gremillion DE. Further investiga-tion of the association between gastroesophageal reflux and bronchoconstriction. J Allergy Clin Immunol 1982; 69: 516–521.

    PubMed  Google Scholar 

  84. Mansfield LE, Hameister HR, Spaulding HS, Smith NJ, Glab N. The role of the vagus nerve in airway narrowing caused by intraesophageal hydrochloric acid provocation and esophageal distension. Ann Allergy 1981; 47: 431–434.

    PubMed  CAS  Google Scholar 

  85. Tuchman DN, Boyle JT, Pack AI, Scwartz J, Kokonos M, Spitzer AR, et al. Compari-son of airway responses following tracheal or esophageal acidification in the cat. Gastroenterology 1984; 87: 872–881.

    PubMed  CAS  Google Scholar 

  86. Rydicki KJ, Kaufman MP. Atropine prevents the reflex tracheal relaxation arising from the stimulation of intestinal and skeletal muscle afferents in dogs. Brain Res 1983; 270: 159–161.

    Google Scholar 

  87. Rybicki KJ, Longhurst JC, Kaufman MP. Stimulation of splanchnic afferents reflexly relaxes tracheal smooth muscle in dogs. J Appl Physiol 1983; 55: 4237–432.

    Google Scholar 

  88. Melville GN, Morris D. Cold I: effect of airway resistance in health and disease. Environ Physiol Biochem 1972; 2: 107–116.

    Google Scholar 

  89. Mukhtar MR, Patrick JM. Bronchoconstriction: a component of the ’diving response’ in man. Eur J Appl Physiol 1984; 53: 155–158.

    CAS  Google Scholar 

  90. Berk JL, Lenner KA, McFaden ERJr. Cold-induced bronchoconstriction: role of cuta-neous reflexes vs. direct airway effects. J Appl Physiol 1987; 63: 659–664.

    PubMed  CAS  Google Scholar 

  91. Rail JE, Gilbert ENC, Trump R. Certain aspects of the bronchial reflexes obtained by stimulation of the nasopharynx. J Lab Clin Med 1945; 30: 953–956.

    Google Scholar 

  92. Vecchiet L, Flacco L, Marini I, Marchionni A, Gatto MRA, D’Autilio A. Effects of cold stimulus of the chest wall on bronchial resistance. Respiration 1985; 47: 253–259.

    PubMed  CAS  Google Scholar 

  93. Keatinge WR, Nadel JA. Immediate respiratory response to sudden cooling of the skin. J Appl Physiol 1965; 20: 65–69.

    PubMed  CAS  Google Scholar 

  94. Todisco T. The oto-respiratory reflex. Respiration 1982; 43: 354–358.

    PubMed  CAS  Google Scholar 

  95. Stein JF, Widdicombe JG. Nervously-mediated changes in tracheal volume on medullary stimulation in dogs. Respir Physiol 1970; 9: 348–355.

    PubMed  CAS  Google Scholar 

  96. Kalia MP. Organization of central control of airways. Ann Rev Physiol 1987; 49: 595–613.

    CAS  Google Scholar 

  97. Haxhiu MA, Deal CJr, Norcia MP, van Lunteren E, Mitra J, Cherniack NS. Influence of ventrolateral surface of medulla on reflex tracheal constriction. J Appl Physiol 1986; 61: 791–796.

    PubMed  CAS  Google Scholar 

  98. Connelly JC, McCallister LW, Kaufman MP. Stimulation of the caudal ventrolateral medulla decreases total lung resistance in dogs. J Appl Physiol 1987; 63: 912–917.

    PubMed  CAS  Google Scholar 

  99. Padrid PA, Haselton JR, Kaufman MP. Role of caudal ventrolateral medulla in reflex and central control of airway caliber. J Appl Physiol 1991; 71: 2274–2282.

    PubMed  CAS  Google Scholar 

  100. McCallister LW, Connelly JC, Kaufman MP. Stimulation of the H fields of Forel decreases total lung resistance in dogs. J Appl Physiol 1988; 65: 2156–2163.

    PubMed  CAS  Google Scholar 

  101. Hey JA, del Prado M, Chapman RW. Activation of a novel medullary pathway elicits a vagal, cholinergic bronchoconstriction in guinea-pigs. Pulm Pharmacol 1990; 3: 53–54.

    PubMed  CAS  Google Scholar 

  102. Nadel JA, Tierney DF. Effect of a previous deep inspiration on airway resistance in man. J Appl Physiol 1961; 16: 717–719.

    PubMed  CAS  Google Scholar 

  103. Nadel JA. Autonomic regulation of airway smooth muscle. In: Nadel JA (ed.): Physiol-ogy and Pharmacology of the airways. New York: Dekker, 1980, pp. 217–257

    Google Scholar 

  104. Jonzon A, Pisarri TE, Roberts AM, Coleridge JCG, Coleridge HM. Attenuation of pulmonary afferent input by vagal cooling in dogs. Respir Physiol 1988; 72: 19–34.

    PubMed  CAS  Google Scholar 

  105. Simonsson BG, Skoogh BE, Bergh NP, Andersson R, Svedmyr N. In vivo and in vitro effect of bradykinin on bronchial motor tone in normal subjects and patients with airways obstruction. Respiration 1973; 30: 378–388.

    PubMed  CAS  Google Scholar 

  106. Gayrard P, Orehek J, Grimaud C, Charpin J. Bronchoconstrictor effects of a deep inspiration in patients with asthma. Am Rev Respir Dis 1975; 111: 433–439.

    PubMed  CAS  Google Scholar 

  107. Davidson AB, Hirshman CA, Downes H, Drazen JM. Large-volume ventilation results in bronchoconstriction of Basenji-Greyhound dogs. J Appl Physiol 1987; 62: 2308–2313.

    PubMed  CAS  Google Scholar 

  108. Gross NJ. Anticholinergic bronchodilators. In: Barnes PJ, Rodger IW, Thomson NC (eds.): Asthma -Basic Mechanisms and Clinical Management. London: Academic Press, 1992; pp. 555–566.

    Google Scholar 

  109. Yu DYC, Galant SP, Gold WM. Inhibition of antigen-induced bronchoconstriction by atropine in asthmatic patients. J Appl Physiol 1972; 32: 823–828.

    PubMed  CAS  Google Scholar 

  110. Fish JE, Rosenthal RR, Summer WR, Menkes H, Norman PS, Perault S. The effect of atropine on acute antigen-mediated airway constriction in subjects with allergic asthma. Am Rev Respir Dis 1977; 115: 371–379.

    PubMed  CAS  Google Scholar 

  111. Cockcroft DW, Ruffin RE, Hargreave FE. Effect of Sch 1000 on allergen-induced asthma. Clin Allergy 1978; 8: 361–372.

    PubMed  CAS  Google Scholar 

  112. Mills JE, Sellick H, Widdicombe JG. Activity of lung irritant receptors in pulmonary microembolism, anaphylaxis and drug-induced bronchoconstriction. J Physiol 1969; 203: 337–357.

    PubMed  CAS  Google Scholar 

  113. Karczewski W, Widdicombe JG. The role of the vagus nerves in the respiratory and circulatory reactions to anaphylaxis in rabbits. J Physiol 1969; 201: 293–304.

    PubMed  CAS  Google Scholar 

  114. Gold WM, Kessler GF, Yu DYC. Role of vagus nerves in experimental asthma in allergic dogs. J Appl Physiol 1972; 33: 719–725.

    PubMed  CAS  Google Scholar 

  115. Widdicombe JG, Kent DC, Nadel JA. Mechanism of bronchoconstriction during inhalation of dust. J Appl Physiol 1962; 17: 613–616.

    PubMed  CAS  Google Scholar 

  116. Sellick H, Widdicombe JG. Stimulation of lung irritant receptors by cigarette smoke, carbon dust, and histamine aerosol. J Appl Physiol 1971; 31: 15–19.

    PubMed  CAS  Google Scholar 

  117. Nadel JA, Salem H, Tamplin B, Tokiwa Y. Mechanism of bronchoconstriction during inhalation of sulfur dioxide. J Appl Physiol 1965; 20: 164–167.

    PubMed  CAS  Google Scholar 

  118. Boushey HA, Richardson PS, Widdicombe JG, Wise JCM. The response of laryngeal afferent fibres to mechanical and chemical stimuli. J Physiol 1974; 240: 153–175. `

    PubMed  CAS  Google Scholar 

  119. Schultz II, D., Roberts AM, Hahn HL, Nadel JA, Coleridge HM, Coleridge JCG. Mechanisms of airway constriction and secretion evoked by laryngeal administration of S02 in dogs. Physiologist 1982; 25: 226.

    Google Scholar 

  120. Amdur MO, Melvin WW, Drinker P. Effects of inhalation of sulphur dioxide by man. Lancet 1953; 2: 758–759.

    Google Scholar 

  121. Coleridge JCG, Coleridge HM. Lower respiratory tract afferents stimulated by inhlaled irritants. Am Rev Respir Dis 1985; 131: S51–S54.

    PubMed  CAS  Google Scholar 

  122. Gerner A, Bromberger-Barnea B, Dannenberg AMJr, Traystman R, Menkhs II. Re-sponses of the lung periphery to 1.0 ppm ozone. J Appl Physiol 1983; 55: 770–776.

    Google Scholar 

  123. Lee L-Y, Dumont C, Djokic TD, Menzei TE, Nadel JA. Mechanism of rapid shallow breathing after ozone exposure in conscious dogs. J Appl Physiol 1979; 46: 1108–1114.

    PubMed  CAS  Google Scholar 

  124. Sampson SR, Vidruk EH, Bergren DR, Dumont C, Lee L-Y. Effects of ozone exposure on responsiveness of intrapulmonary rapidly adapting receptors to bronchoactive agents in dogs. Fed Proc 1978; 37: 712.

    Google Scholar 

  125. Nadel JA, Comroe JH Jr. Acute effects of inhalation of cigarette smoke on airway conductance. J Appl Physiol 1961; 16: 713–716.

    PubMed  CAS  Google Scholar 

  126. Sterling GM. Mechanism of bronchoconstriction caused by cigarette smoking. Br Med J 1967; 3: 275–277.

    PubMed  CAS  Google Scholar 

  127. Rees PJ, Chowienczyk PJ, Clark TJH. Immediate response to cigarette smoke. Thorax 1982; 37: 417–422.

    PubMed  CAS  Google Scholar 

  128. Lee L-Y, Beck ER, Morton RF, Koo YR, Frazier DT. Role of bronchopulmonary C-fiber aíferents in the apneic response to cigarette smoke. J Appl Physiol 1987; 63: 1366–1373.

    PubMed  CAS  Google Scholar 

  129. Lee L-Y, Kou YR, Frazier DT, Beck ER, Pisarri TE, Coleridge HM, et al. Stimulation of vagal pulmonary C-fibers by a single breath of cigarette smoke in dogs. FASEBJ 1988; 2: A1297.

    Google Scholar 

  130. Hartiala JJ, Mapp C, Mitchell RA, Shields RL, Gold WM. Cigarette smoke-induced bronchoconstriction in dogs: vagal and extravagal mechanisms. J Appl Physiol 1984; 57: 1261–1270.

    PubMed  CAS  Google Scholar 

  131. Hartiala JJ, Mapp C, Mitchell RA, Gold WM. Nicotine-induced respiratory effects of cigarette smoke in dogs. J Appl Physiol 1985; 59: 64–71.

    PubMed  CAS  Google Scholar 

  132. Anderson SD. Exercise-induced asthma. In: Middleton E, Reed E, Ellis E, Adkinson NF, Yunginger JW (eds.): Allergy: Principles and practice. St Louis: CV Mosby Company, 1988; pp. 1156–1175.

    Google Scholar 

  133. Kagawa J, Kerr HD. Effects of brief graded exercise on specific airway conductance in normal subjects. J Appl Physiol 1970; 28: 138–144.

    PubMed  CAS  Google Scholar 

  134. Warren JB, Jennings SJ, Clark TJH. Effect of adrenergic and vagal blockade on the normal human airway response to exercise. Clin Sci 1984; 66: 79–85.

    PubMed  CAS  Google Scholar 

  135. Wells RE, Walker JEC, Hickler RB. Effects of cold air on respiratory airflow resistance in patients with respiratory tract disease. New Eng J Med 1960; 263: 268–273.

    PubMed  Google Scholar 

  136. Solway J. Respiratory air conditioning and the bronchial circulation. In: Butler J (ed.): The bronchial circulation. New York: Marcel Dekker, Inc, 1992; pp. 291–336.

    Google Scholar 

  137. Smith CM, Anderson SD. Hyperosmolarity as the stimulus to asthma induced by hyperventilation? J Allergy Clin Immunol 1986; 77: 729–736.

    PubMed  CAS  Google Scholar 

  138. Anderson SD, Silverman M, Godfrey S, König P. Exercise-induced asthma: A review. Br J Dis Chest 1975; 69: 1–39.

    PubMed  CAS  Google Scholar 

  139. McFadden ERJ. Hypothesis: exercise-induced asthma as a vascular phenomenon. Lancet 1990; 880–883.

    Google Scholar 

  140. Rodriguez-Martinez F, Mascia AV, Mellins RB. Effect of environmental temperature on airway resistance in the asthmatic child. Pediat Res 1973; 7: 627–631.

    PubMed  CAS  Google Scholar 

  141. McNally JP, Enright P, Hirsch JE, Souhrada JF. The attenuation of exercise-induced bronchoconstriction by oropharyngeal anesthesia. Am Rev Respir Dis 1979; 119: 247– 252.

    PubMed  Google Scholar 

  142. Sant’Ambrogio G, Mathew OP, Sant’Ambrogio FB, Fisher JT. Laryngeal cold recep-tors. Respir Physiol 1985; 59: 35–44.

    PubMed  Google Scholar 

  143. Anderson SD. Asthma provoked by exercise, hyperventilation, and the inhalation of non-isotonic aerosols. In: Barnes PJ, Rodger IW, Thomson NC (eds.): Asthma. Basic mechanisms and clinical management. London: Academic Press, 1992; pp. 473–490.

    Google Scholar 

  144. Simonsson BG, Jacobs FM, Nadel JA. Role of autonomic nervous system and the cough reflex in the increased responsiveness of airways in patients with obstructive airway disease. J Clin Invest 1967; 46: 1812–1818.

    PubMed  CAS  Google Scholar 

  145. Kiviloog J. The effect of pretreatment with atopine in exercise-induced bronchoconstric-tion. Pediatrics 1975; 56: 940–941.

    PubMed  CAS  Google Scholar 

  146. Wolkove N, Kreisman H, Frnak H, Gent M. The effect of ipratropium on exercise-induced bronchoconstriction. Ann Allergy 1981; 47: 311–315.

    PubMed  CAS  Google Scholar 

  147. Thomson NC, Patel KR, Kerr JW. Sodium cromoglycate and ipratropium bromide in exercise-induced asthma. Thorax 1978; 33: 694–699.

    PubMed  CAS  Google Scholar 

  148. Finnerty JP, Holgate ST. The contribution of histamine release and vagal reflexes, alone and in combination, to exercise-induced asthma. Eur Respir J 1993; 6: 1132–1137.

    PubMed  CAS  Google Scholar 

  149. Ainsworth GA, Garland LG, Payne AN. Modulation of bronchoconstrictor responses to histamine in pithed guinea-pigs by sympathetic nerve stimulation. Br J Pharmacol 1982; 77: 249–254.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Widdicombe, J.G., Wells, U.M. (1994). Vagal Reflexes. In: Raeburn, D., Giembycz, M.A. (eds) Airways Smooth Muscle. Respiratory Pharmacology and Pharmacotherapy. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7558-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7558-5_11

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7560-8

  • Online ISBN: 978-3-0348-7558-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics