Skip to main content

Numerical Bifurcation Analysis of a Model of Coupled Neural Oscillators

  • Chapter
Bifurcation and Symmetry

Abstract

Biological and artificial neural networks that consist of coupled neural oscillators receive much attention in neural network modelling nowadays. The construction of a network of this type requires the selection of a mathematical model for a single neural oscillator and the choice of a mechanism to couple the oscillators. Furthermore, one can consider neural oscillators that are all identical to each other or oscillators with different parameters (e.g., different intrinsic frequencies).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.S. Afrajmovich, V.I. Arnold, Yu.S. Il’yashenko and L.P. Shil’nikov (1991). Theory of Bifurcations. In Dynamical Systems 5, V.I. Arnold (ed.). Encyclopaedia of Mathematical Sciences, Springer-Verlag, New York.

    Google Scholar 

  2. G.N. Borisyuk, R.M. Borisyuk, A.I. Khibnik. Analysis of oscillatory regimes in a coupled neural oscillator system with application to visual cortex modeling. In Proceedings of Workshop on Complex Dynamics in Neural Networks, (IIASS, Vietri sul Mare, June 1991), Springer series Approaches to Neurocomputing, Springer-Verlag.

    Google Scholar 

  3. R.M. Borisyuk, A.B. Kirillov (1991). Bifurcation analysis of neural network model. Biological Cybernetic (in press).

    Google Scholar 

  4. M. Dellnitz, M. Golubitsky, I. Melbourne (1991). Mechanisms of symmetry creation. Preprint, University of Houston (see also this volume).

    Google Scholar 

  5. M. Dellnitz, M. Golubitsky, I. Melbourne (1991). The structure of symmetric attractors. Preprint, University of Houston.

    Google Scholar 

  6. G.B. Ermentrout, N. Kopell (1991). Multiple pulse interactions and averaging in systems of coupled neural oscillators. J. of Mathematical Biology, 29, pp. 195–217.

    Article  Google Scholar 

  7. J. Guckenheimer and P. Holmes (1983). Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag, New York.

    Google Scholar 

  8. A.I. Khibnik (1990). Numerical methods in bifurcation analysis of dynamical systems: a continuation approach. In Mathematics and Modelling, A.D. Bazykin and Yu.G. Zarhin (eds.), pp.162–197. USSR Academy of Sciences, Pushchino (in Russian).

    Google Scholar 

  9. A.I. Khibnik (1990). LINLBF: A program for continuation and bifurcation analysis of equilibria up to codimension three. In Continuation and Bifurcations: Numerical Techniques and Applications, D. Roose, B. de Dier, A. Spence (eds.), pp. 283-296. Kluwer.

    Google Scholar 

  10. A.I. Khibnik (1990). Using TraX: A Tutorial to Accompany TraX, A Program for Simulation and Analysis of Dynamical Systems. Exeter Software, New York.

    Google Scholar 

  11. A. Khibnik, Yu. Kuznetsov, V. Levitin, E. Nikolaev (1990). LOCBIF: Interactive Local Bifurcation Analyser, version 1.1. Report, Research Computing Centre, USSR Academy of Sciences, Pushchino.

    Google Scholar 

  12. A.I. Khibnik, Yu.A. Kuznetsov, V.V. Levitin, E.N. Nikolaev. Continuation techniques and interactive software for bifurcation analysis of ODEs and iterated maps. In Proceedings of Advanced NATO Workshop on Homoclinic Chaos (Brussels, May 1991), Physica D (submitted for publication).

    Google Scholar 

  13. E. Knobloch, D. Moore (1991). Chaotic travelling wave convection. In Proc. IUTAM Symposium on Nonlinear Hydrodynamic Stability and Transition.

    Google Scholar 

  14. V.V. Levitin (1989). TraX: Simulation and Analysis of Dynamical Systems. Exeter Software, New York.

    Google Scholar 

  15. C. Sparrow (1982). The Lorenz Equations. Springer-Verlag, New York.

    Google Scholar 

  16. S. Wiggins (1988). Global Bifurcations ans Chaos. Springer-Verlag, New York.

    Book  Google Scholar 

  17. H.R. Wilson, J.D. Cowan (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J., 12, pp. 1–24.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Birkhäuser Verlag Basel

About this chapter

Cite this chapter

Khibnik, A.I., Borisyuk, R.M., Roose, D. (1992). Numerical Bifurcation Analysis of a Model of Coupled Neural Oscillators. In: Allgower, E.L., Böhmer, K., Golubitsky, M. (eds) Bifurcation and Symmetry. International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale d’Analyse Numérique, vol 104. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7536-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7536-3_19

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7538-7

  • Online ISBN: 978-3-0348-7536-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics