Skip to main content

Genome evolution: Between the nucleosome and the chromosome

  • Chapter
Molecular Ecology and Evolution: Approaches and Applications

Part of the book series: Experientia Supplementum ((EXS,volume 69))

Summary

Intermediate between DNA sequences and broad patterns of karyotypic change there is a major gap in understanding genome structure and evolution. The gap is at the megabase level between genes and chromosomes. New methods for analyzing large DNA fragments cloned in yeast or bacterial vectors provide experimental access to genome evolution at the megabase level by enabling the assembly of megabase-size contiguous regions. Genome evolution at the megabase level can also be studied using high-resolution genetic maps. Rates and patterns of genome evolution in mammals (mouse versus humans) and Drosophila (D. virilis versus D. melanogaster) are compared and contrasted. Opportunities for research in genome evolution using the new technologies are enumerated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ajioka, J.W., Smoller, D.A., Jones, R.W., Carulli, J.P., Vellek, A.E.C., Garza, D., Link, A.J., Duncan, I.W. and Hartl, D.L. (1991) Drosophila genome project: One-hit coverage in yeast artifical chromosomes. Chromosoma 100: 495–509.

    Article  PubMed  CAS  Google Scholar 

  • Alexander, M.L. (1976) The genetics of Drosophilia virilis. In: M. Ashburner and E. Novitski (eds): The Genetics and Biology of Drosophilia. Academic Press, New York, pp. 1365–1427.

    Google Scholar 

  • Ashburner, M. (1989) Drosophila: A Laboratory Handbook. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  • Berg, D.E. and Howe, M.M. (1989) Mobile DNA. American Society for Microbiology, Washington, DC.

    Google Scholar 

  • Bernardi, G. (1989) The isochore organization of the human genome. Ann. Rev. Genet. 23: 637–661.

    Article  PubMed  CAS  Google Scholar 

  • Beverley, S.M. and Wilson, A.C. (1984) Molecular evolution in Drosophila and the higher diptera II. Time scale for fly evolution. J. Mol. Evol. 21: 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Burke, D.T., Carle G.F. and Olson, M.V. (1987) Cloning of large segments of exogenous DNA into yeast by means of artifical chromosome vectors. Science 236: 806–812.

    Article  PubMed  CAS  Google Scholar 

  • Caccone, A., Amato, G.D. and Powell, J.R. (1988) Rates and patterns of scnDNA and mtDNA divergence within the Drosophila melanogaster subgroup. Genetics 118: 671–683.

    PubMed  CAS  Google Scholar 

  • Carulli, J.P., Krane, D.E., Hartl, D.L. and Ochman, H. (1993) Compositional heterogeneity and patterns of molecular evolution in the Drosophila genome. Genetics 134: 837–845.

    PubMed  CAS  Google Scholar 

  • Coyne, J.A., Meyers, W., Crittenden, A.P. and Sniegowski, P. (1993) The fertility effects of pericentric inversions in Drosophila melanogaster. Genetics 134: 487–496.

    PubMed  CAS  Google Scholar 

  • DeSalle, R. (1992) The phylogenetic relationships of flies in the family Drosophilidae deduced from mtDNA sequences. Mol. Phylogenet. Evol. 1: 31–40.

    Article  PubMed  CAS  Google Scholar 

  • Dietrich, W., Katz, H., Lincoln, S.E., Shin, H.S., Friedman, J., Dracopoli, N.C. and Lander, E.S. (1992) A genetic map of the mouse suitable for typing intraspecific crosses. Genetics 131: 423–447.

    PubMed  CAS  Google Scholar 

  • Dobzhansky, T. (1937) Genetics and the Origin of Species. Columbia University Press, New York.

    Google Scholar 

  • Dobzhansky, T. (1970) Genetics of the Evolutionary Process. Columbia University Press, New York.

    Google Scholar 

  • Dove, W.F. (1993) The gene, the polygene, and the genome. Genetics 134: 999–1002.

    PubMed  CAS  Google Scholar 

  • Felsenstein, J. (1988) Phylogenies from molecular sequences: Inference and reliability. Ann. Rev. Genet. 22: 521–565.

    Article  PubMed  CAS  Google Scholar 

  • Gall, J.G. (1973) Repetitive DNA in Drosophila. In: B.A. Hamkalo and J. Papaconstantinou (eds): Molecular Cytogenetics. Plenum, New York, pp. 59–73.

    Google Scholar 

  • Gubenko, I.S. and Evgenev, M.B. (1984) Cytological and linkage maps of Drosophila virilis chromosomes. Genetica 65: 127–139.

    Article  Google Scholar 

  • Hartl, D.L. (1992) Genome map of Drosophila melanogaster based on yeast artifical chromosomes. In: K.E. Davis and S.M. Tilghman (eds): Genome Analysis Volume 4: Strategies for Physical Mapping. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp. 39–69.

    Google Scholar 

  • Hartl, D.L. and Lozovskaya, E.R. (1992) The Drosophila genome project: Current status of the physical map. Comp. Biochem. Physiol. 103B: 1–8.

    CAS  Google Scholar 

  • Hartl, D.L., Ajioka, J.W., Cai, H., Lohe, A.R., Lozovskaya, E.R., Smoller, D.A. and Duncan, I.W. (1992) Towards a Drosophila genome map. Trends Genet. 8: 70–75.

    PubMed  CAS  Google Scholar 

  • Heberlein, U. and Rubin, G.M. (1990) Structural and functional comparisons of the Drosophila virilis and Drosophila melanogaster rough genes. Proc. Natl. Acad. Sci. USA 87: 5916–5920.

    Article  PubMed  CAS  Google Scholar 

  • Hilliker, A.J. (1985) Assaying chromosome arrangement in embryonic interphase nuclei of Drosophila melanogaster by radiation-induced interchanges. Genet. Res. 47: 13–18.

    Article  Google Scholar 

  • Hilliker, A.J. and Trusis-Coulter, S.N. (1987) Analysis of the functional significance of linkage group conservation in Drosophila. Genetics 117: 233–244.

    CAS  Google Scholar 

  • Hillis, D.M. and Moritz, C. (1990) Molecular Systematics. Sinauer Associates Inc., Sunderland, Massachusetts.

    Google Scholar 

  • Hooper, J.E., PĂ©rez-Alonzo, M., Bermingham, J.R., Prout, M., Rocklein, B.A., Wagenbach, M., Edstrom, J.-E., de Frutos, R. and Scott, M.P. (1992) Comparative studies of Drosophila Antennapedia genes. Genetics 132: 453–469.

    PubMed  CAS  Google Scholar 

  • John, B. and MiklĂłs, G.L.G. (1988) The Eukaryotic Genome in Development and Evolution. Allen and Unwin, London.

    Google Scholar 

  • Kafatos, F.C., Louis, C., Savakis, C., Glover, D.M., Ashburner, M., Link, A.J., SidĂ©n-Kiamos, I. and Saunders, R.D.C. (1991) Integrated maps of the Drosophila genome: progress and prospects. Trends Gene. 7: 155–161.

    CAS  Google Scholar 

  • Laird, C.D. (1973) DNA of Drosophila chromosomes. Ann. Rev. Genet. 7: 177–204.

    Article  PubMed  CAS  Google Scholar 

  • Lemeunier, F. and Ashburner, M. (1976) Relationships within the melanogaster species subgroup of the genus Drosophila (Sophophora). II. Phylogenetic relationships between six species based upon polytene chromosome banding sequences. Proc. Roy. Soc. Lond. B 193: 275–294.

    Article  Google Scholar 

  • Lemeunier, F., David, J.R., Tsacas, L. and Ashburner, M. (1986) The melanogaster species group. In: M. Ashburner and H.L. Carson (eds): The Genetics and Biology of Drosophila. Academic Press, New York, pp. 147–256.

    Google Scholar 

  • Li, W.-H., Gouy, M., Sharp, R.M., O’hUigin, C. and Yang, Y.-W. (1990) Molecular phylogeny of Rodentia, Lagomorpha, Primates, Artiodactyla, and Carnivora and molecular clocks. Proc. Natl. Acad. Sci. USA 87: 6703–6707.

    Article  PubMed  CAS  Google Scholar 

  • Lohe, A.R., Hilliker, A.J. and Roberts, P.A. (1993) Mapping simple repeated DNA sequences in heterochromatin of Drosophila melanogaster. Genetics 134: 1149–1174.

    PubMed  CAS  Google Scholar 

  • Loukas, M. and Kafatos, F.C. (1986) The actin loci in the genus Drosophila: Establishment of chromosomal homologies among distantly related species by in situ hybridization. Chromosoma 94: 297–308.

    Article  CAS  Google Scholar 

  • Lozovskaya, E.R., Scheinker, V.S. and Evgenev, M.B. (1990) A hybrid dysgenesis syndrome in Drosophila virilis. Genetics 126: 619–623.

    PubMed  CAS  Google Scholar 

  • Lozovskaya, E.R., Petrov, D.A. and Hartl, D.L. (1993) A combined molecular and cytogenetic approach to genome evolution in Drosophila using large-fragment DNA cloning. Chromosoma 102: 253–266.

    Article  PubMed  CAS  Google Scholar 

  • Merriam, J., Ashburner, M., Hartl, D.L. and Kafatos, F.C. (1991) Toward cloning and mapping the genome of Drosophila. Science 254: 221–225.

    Article  PubMed  CAS  Google Scholar 

  • Michael, W.M., Bowtell, D.D.L. and Rubin, G.M. (1990) Comparison of the sevenless genes of Drosophila virilis and Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 87: 5351–5353.

    Article  PubMed  CAS  Google Scholar 

  • MiklĂłs, G.L.G. (1985) Localized highly repetitive DNA sequences in vertebrate and invertebrate genomes. In: R.J. MacIntyre (ed): Molecular Evolutionary Genetics. Plenum, New York, pp. 241–321.

    Chapter  Google Scholar 

  • Moriyama, E.N. and Gojobori, T. (1992) Rates of synonymous sutstitution and base composition of nuclear genes in Drosophila. Genetics 130: 855–864.

    PubMed  CAS  Google Scholar 

  • Moriyama, E.N. and Hartl, D.L. (1993) Codon usage bias and base composition of nuclear genes in Drosophila. Genetics 134: 847–858.

    PubMed  CAS  Google Scholar 

  • Muller, H.J. (1940) Bearings of the Drosophila work on systematics. In: J. Huxley (ed): New Systematics. Clarendon, Oxford, England, pp. 185–268.

    Google Scholar 

  • Nadeau, J.H. and Taylor, B.A. (1984) Lengths of chromosomal segments conserved since the divergence of man and mouse. Proc. Natl. Acad. Sci. USA 81: 814–818.

    Article  PubMed  CAS  Google Scholar 

  • Neufeld, T.P., Carthew, R.W. and Rubin, G.M. (1988) Evolution of gene position: Chromosomal arrangement and sequence comparison of the Drosophila melanogaster and Drosophila virilis sina and Rh4 genes. Proc. Natl. Acad. Sci. USA 88: 10203–10207.

    Article  Google Scholar 

  • O’Brien, S.J., Seuánez, H.N. and Womack, J.E. (1985) On the evolution of genome organization in mammals. In: R.J. Maclntyre (ed.): Molecular Evolutionary Genetics. Plenum, New York, pp. 519–589.

    Chapter  Google Scholar 

  • O’Brien, S.J. and Seuánez, H.N. (1988) Mammalian genome organization: An evolutionary view. Ann. Rev. Genet. 22: 323–351.

    Article  PubMed  Google Scholar 

  • O’Brien, S.J. (1991) Mammalian genome mapping: lessons and prospects. Curr. Opinion Genet. Dev. 1: 105–111.

    Article  Google Scholar 

  • O’Brien, S.J. (1993) The genomics generation. Curr. Biol. 3: 395–397.

    Article  Google Scholar 

  • O’Brien, S.J., Womack, J.E., Lyons, L.A., Moore, K.J., Jenkins, N.A. and Copeland, N.G. (1993) Anchored reference loci for comparative genome mapping in mammals. Nature Genetics 3: 103–112.

    Article  PubMed  Google Scholar 

  • Ohno, S. (1973) Ancient linkage groups and frozen accidents. Nature 244: 259–262.

    Article  Google Scholar 

  • Olson, M.V., Hood, L., Cantor, C. and Botstein, D. (1989) A common language for physical mapping of the human genome. Science 245: 1434–1440.

    Article  PubMed  CAS  Google Scholar 

  • Palazzolo, M.J., Sawyer, S., Martin, C.H., Smoller, D.A. and Hartl, D.L. (1991) Optimized strategies for sequence-tagged-site selection in genome mapping. Proc. Natl. Acad. Sci. USA 88: 8034–8038.

    Article  PubMed  CAS  Google Scholar 

  • Pardue, M.L. (1986) In situ hybridization to DNA of chromosomes and nuclei. In: D.B. Roberts (ed.): Drosophila: A Practical Approach. IRL Press, Washington, D.C.

    Google Scholar 

  • Patterson, J.T., Stone, W.S. and Griffen, A.B. (1940) The virilis complex in Drosophila. Genetics 25: 131.

    Google Scholar 

  • Patterson, J.T. and Stone, W.S. (1952) Evolution in the Genus Drosophila. Macmillan, New York.

    Google Scholar 

  • Scheinker, V., Lozovskaya, E., Bishop, J.G., Corces, V.G. and Evgen’ev, M.B. (1990) A long terminal repeat-containing retrotransposon is mobilized during hybrid dysgenesis in D. virilis. Proc. Natl. Acad. Sci. USA 87: 9615–9619.

    Article  PubMed  CAS  Google Scholar 

  • SidĂ©n-Kiamos, I., Saunders, R.D.C., Spanos, L., Majerus, T., Treanear, J., Savakis, C., Louis, C., Glover, D.M., Ashburner, M. and Kafatos, F.C. (1990) Towards a physical map of the Drosophila melanogaster genome: Mapping of cosmid clones within defined genomic divisions. Nucleic Acids Res. 18: 6261–6270.

    Article  PubMed  Google Scholar 

  • Smoller, D.A., Petrov, D. and Hartl, D.L. (1991) Characterization of bacteriophage P1 library containing inserts of Drosophila DNA of 75–100 kilobase pairs. Chromosoma 100: 487–494.

    Article  PubMed  CAS  Google Scholar 

  • Sternberg, N. (1990) Bacteriophage P1 cloning system for the isolation, amplification, and recovery of DNA fragments as large as 100 kilobase pairs. Proc. Natl. Acad. Sci. USA 87: 103–107.

    Article  PubMed  CAS  Google Scholar 

  • Sturtevant, A.H. (1913) The linear arrangement of six sex-linked genes in Drosophila, as shown by their mode of association. J. Exper. Zool. 14: 43–59.

    Article  Google Scholar 

  • Sturtevant, A.H. and Novitski, E. (1941) The homologies of the chromosome elements in the genus Drosophila. Genetics 26: 517–541.

    PubMed  CAS  Google Scholar 

  • Throckmorton, L.H. (1982) The virilis species group. In: M. Ashburner, H.L. Carson and J.N.J. Thompson (eds): The Genetics and Biology of Drosophila. Academic Press, New York, pp. 227–296.

    Google Scholar 

  • Watson, J.D. (1990) The human genome project: Past, present, and future. Science 248: 44–49.

    Article  PubMed  CAS  Google Scholar 

  • Weber, J.L. and May, P.E. (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. Hum. Genet. 44: 388–396.

    PubMed  CAS  Google Scholar 

  • Whiting, J.H., Jr., Pliley, M.D., Farmer, J.L. and Jeffery, D.E. (1989) In situ hybridization analysis of chromosomal homologies in Drosophila melanogaster and Drosophila virilis. Genetics 122: 99–109.

    PubMed  CAS  Google Scholar 

  • Young, M.W. (1979) Middle repetitive DNA: A fluid component of the Drosophila genome. Proc. Natl. Acad. Sci. USA 16: 6274–6278.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Basel AG

About this chapter

Cite this chapter

Hartl, D.L., Lozovskaya, E.R. (1994). Genome evolution: Between the nucleosome and the chromosome. In: Schierwater, B., Streit, B., Wagner, G.P., DeSalle, R. (eds) Molecular Ecology and Evolution: Approaches and Applications. Experientia Supplementum, vol 69. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7527-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7527-1_34

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-7529-5

  • Online ISBN: 978-3-0348-7527-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics