Skip to main content

Part of the book series: Experientia Supplementum ((EXS,volume 69))

Summary

Systematists and population geneticists can both use molecular data sets to construct evolutionary trees (species and gene trees, respectively), and then use the resulting historical framework to test a variety of hypotheses. The greatest prospect for future advances in our understanding of speciation is to extend these historical approaches to the species/population interface, for only by straddling this interface can we actually study the processes involved in the origin of a new species. This chapter illustrates how the bottom-up historical approaches used in population genetics can be extended upwards to this critical interface in order to separate the effects of population structure from population history, to rigorously test the species status of a group, and to test hypotheses about the process of speciation by using gene trees to define a nested, statistical analysis of biogeographic and other types of data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antonarakis, S.E., Boehm, C.D., Serjeant, G.R., Theisen, C.E., Dover, G.J. and Kazazian H.K., Jr. (1984) Origin of the β-globin gene in Blacks: The contribution of recurrent mutation or gene conversion or both. Proc. Natl. Acad. Sci. USA 81: 853–856.

    Article  PubMed  CAS  Google Scholar 

  • Avise, J.C., Ball, R.M. and Arnold, J. (1988) Current versus historical population sizes in vertebrate species with high gene flow: a comparison based on mitochondrial DNA lineages and inbreeding theory for neutral mutations. Mol. Biol. Evol. 5: 331–344.

    PubMed  CAS  Google Scholar 

  • Avise, J.C (1989) Gene trees and organismal histories: a phylogenetic approach to population biology. Evolution 43: 1192–1208.

    Article  Google Scholar 

  • Barton, N.H. and Charlesworth, B. (1984) Genetic revolutions, founder effects, and speciation. Ann. Rev. Ecol. Syst. 15: 133–164.

    Article  Google Scholar 

  • Baum, D.A. and Larson, A. (1991) Adaptation reviewed: a phylogenetic methodology for studying character macroevolution. Syst. Zool. 40: 1–18.

    Article  Google Scholar 

  • Bush, G.L. (1975) Modes of speciation. Ann. Rev. Ecol. Syst. 6: 339–364.

    Article  Google Scholar 

  • Carson, H.L. and Templeton, A.R. (1984) Genetic revolutions in relation to speciation phenomena: the founding of new populations. Ann. Rev. Ecol. Syst. 15: 97–131.

    Article  Google Scholar 

  • Castelloe, J. and Templeton, A.R. (1994) Root probabilities for intraspecific gene trees under neutral coalescent theory. Mol. Phyl. Evol. 3; in press.

    Google Scholar 

  • Cracraft, J. (1989) Species as entities of biological theory. In: M. Ruse (ed.): What the Philosophy of Biology Is. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 31–52.

    Chapter  Google Scholar 

  • Crandall, K.A. (1993) A phylogenetic analysis of speciation in the crayfish subgenus Procericambarus (Decapoda: Cambaridae). Ph.D. Thesis. Washington University, St. Louis, Missouri.

    Google Scholar 

  • DeSalle, R. and Templeton, A.R. (1988) Founder effects and the rate of mitochondrial DNA evolution in Hawaiian Drosophila. Evolution 42: 1076–1084.

    Article  Google Scholar 

  • Ewens, W.J. (1990) Population genetics theory — the past and the future. In: S. Lessard (ed.). Mathematical and Statistical Developments of Evolutionary Theory. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 177–227.

    Chapter  Google Scholar 

  • Farrell, B. and Mitter, C. (1990) Phylogenesis of insect/plant interactions: have Phyllobrotica leaf beetles (Chrysomelidae) and the Lamiales diversified in parallel. Evolution 44: 1389–1403.

    Article  Google Scholar 

  • Golding, G.B. (1987) The detection of deleterious selection using ancestors inferred from a phylogenetic history. Genet. Res. 49: 71–82.

    Article  PubMed  CAS  Google Scholar 

  • Golding, B. and Felsenstein, J. (1990) A maximum likelihood approach to the detection of selection from a phylogeny. J. Mol. Evol. 31: 511–523.

    Article  PubMed  CAS  Google Scholar 

  • Gould, S.J. (1977) Ontogeny and Phylogeny. Belknap Press, Cambridge, Massachusetts.

    Google Scholar 

  • Harris, R.N., Semlitsch, R.D., Wilbur, H.M. and Fauth, J.E. (1990) Local variation in the genetic basis of pedomorphosis in the salamander Ambystoma talpoideum. Evolution 44: 1588–1603.

    Google Scholar 

  • Harrison, R.G. (1991) Molecular changes at speciation. Annu. Rev. Ecol. Syst. 22: 281–308.

    Article  Google Scholar 

  • Hartl, D.L. and Sawyer, S.A. (1991) Inference of selection and recombination from nucleotide sequence data. J. Evol. Biol. 4: 519–532.

    Article  Google Scholar 

  • Harvey, P.H. and Pagel, M.D. (1991) The Comparative Method in Evolutionary Biology. Oxford University Press, Oxford.

    Google Scholar 

  • Hillis, D.M. (1985) Evolutionary genetics of the Andean lizard genus Pholidobolus (Sauria: Gymnophthalmidae) : phylogeny, biogeography, and a comparison of tree construction techniques. Syst. Zool. 34: 109–126.

    Article  Google Scholar 

  • Hubby, J.L. and Throckmorton, L.H. (1965) Protein differences in Drosophila. II. Comparative species genetics and evolutionary problems. Genetics 52: 203–215.

    PubMed  CAS  Google Scholar 

  • Hudson, R.R. (1990) Gene genealogies and the coalescent process. Oxford Surveys Evol. Biol. 7: 1–44.

    Google Scholar 

  • Hudson, R.R., Slatkin, M. and Maddison, W.P. (1992) Estimation of levels of gene flow from DNA-sequence data. Genetics 132: 583–589.

    PubMed  CAS  Google Scholar 

  • Johnson, F.M., Kanapi, C.G., Richardson, R.H., Wheeler, M.R. and Stone, W.S. (1966) An operational classification of Drosophila esterases for species comparisons. In: M.R. Wheeler (ed.): Studies in Genetics. III. Morgan Centennial Issue. University of Texas, Austin, pp. 517–532.

    Google Scholar 

  • Kingman, J.F.C. (1982a) The coalescent. Stochast. Proc. Appl. 13: 235–248.

    Article  Google Scholar 

  • Kingman, J.F.C. (1982b) On the genealogy of large populations. J. Appl. Prob. 19A: 27–43.

    Article  Google Scholar 

  • Larson, A. (1984) Neontological inferences of evolutionary pattern and process in the salamander family Plethodontidae. Evol. Biol. 17: 119–217.

    Article  Google Scholar 

  • Lynch, J.D. (1989) The gauge of speciation: on the frequencies of modes of speciation. In: D. Otte and J.A. Endler (eds): Speciation and Its Consequences. Sinauer Associates Inc., Sunderland, Massachusetts, pp. 527–553.

    Google Scholar 

  • Matos, J. (1992) Evolution within the Pinus montezumae Complex of Mexico: Population Subdivison, Hybridization, and Taxonomy. Ph.D. Thesis. Washington University, St. Louis, Missouri.

    Google Scholar 

  • Mayr, E. (1954) Change of genetic environment and evolution. In: J. Huxley, A.C. Hardy and E.B. Ford (eds): Evolution as a Process. Princeton, N.J., Princeton University Press, pp. 157–180.

    Google Scholar 

  • Mayr, E. (1982) Processes of speciation in animals. In: C. Barigozzi (ed.): Mechanisms of Speciation. New York, Alan R. Liss., pp. 1–19.

    Google Scholar 

  • Mayr, E. (1992) A local flora and the biological species concept. Amer. J. Botany 79: 222–238.

    Article  Google Scholar 

  • Mitter, C., Farrell, B. and Wiegmann, B. (1988) The phylogenetic study of adaptive zones: has phytophagy promoted insect diversification? Amer. Natur. 132: 107–128.

    Article  Google Scholar 

  • Mitter, C., Farrell, B. and Futuyma, D.J. (1991) Phylogenetic studies of insect-plant interactions: insights into the genesis of diversity. Trends Ecol. Evol. 6: 290–293.

    Article  PubMed  CAS  Google Scholar 

  • O’Brien, S.J. (1991) Ghetto legacy. Curr. Biol. 1: 209–211.

    Article  PubMed  Google Scholar 

  • Otte, D. (1989) Speciation in Hawaiian crickets. In: D. Otte and J.A. Endler (eds): Speciation and Its Consequences. Sinauer Associates Inc., Sunderland, Massachusetts, pp. 482–526.

    Google Scholar 

  • Page, R. D. M. (1990) Temporal congruence and cladistic analysis of biogeography and cospeciation. Syst. Zool. 39: 205–226.

    Article  Google Scholar 

  • Paterson, H. (1985) The recognition concept of species. In: E. Verba (ed.): Species and Speciation. Transvaal Museum, Pretoria, South Africa, pp. 21–29.

    Google Scholar 

  • Routman, E. (1993) Population structure and genetic diversity of metamorphic and paedomorphic populations of the tiger salamander, Ambystoma tigrinum. J. Evol. Biol. 6: 329–357.

    Article  Google Scholar 

  • Semlitsch, R.D. and Wilbur, H.M. (1989) Artificial selection for paedomorphosis in the salamander Amybstoma talpoideum. Evolution 43: 105–112.

    Article  Google Scholar 

  • Shaw, K.L. (1993) The evolution of song groups in the Hawaiian cricket genus Laupala. Ph.D. Thesis. Washington University, St. Louis, Missouri.

    Google Scholar 

  • Slatkin, M. (1989) Detecting small amounts of gene flow from phylogenies of alleles. Genetics 121: 609–612.

    PubMed  CAS  Google Scholar 

  • Slatkin, M. and Maddison, W.P. (1989) A cladistic measure of gene flow inferred from the phylogenies of alleles. Genetics 123: 603–613.

    PubMed  CAS  Google Scholar 

  • Slatkin, M. and Maddison, W.P. (1990) Detecting isolation by distance using phylogenies of genes. Genetics 126: 249–260.

    PubMed  CAS  Google Scholar 

  • Sokal, R.R. and Crovello, J.T. (1970) The biological species concept: a critical evalution. Amer. Natur. 104: 127–153.

    Article  Google Scholar 

  • Templeton, A.R. (1980) The theory of speciation via the founder principle. Genetics 94: 1011–1038.

    PubMed  CAS  Google Scholar 

  • Templeton, A.R. (1981) Mechanisms of speciation — a population genetic approach. Ann. Rev. Ecol. Syst. 12: 23–48.

    Article  Google Scholar 

  • Templeton, A.R. (1983) Natural and experimental parthenogenesis. In: M. Ashburner, H.L. Carson and J.N. Thompson (eds): The Genetics and Biology Drosophila. Academic Press, London, pp. 343–398.

    Google Scholar 

  • Templeton, A.R., Boerwinkle, E. and Sing, C.F. (1987) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. I. Basic theory and an analysis of Alcohol Dehydrogenase activity in Drosophila. Genetics 117: 343–351.

    CAS  Google Scholar 

  • Templeton, A.R., Sing, C.F., Kessling, A. and Humphries, S. (1988) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. II. The analysis of natural populations. Genetics 120: 1145–1154.

    PubMed  CAS  Google Scholar 

  • Templeton, A.R. (1989) The meaning of species and speciation: A genetic perspective. In: D. Otte and J.A. Endler (eds): Speciation and its Consequences. Sinauer Associates Inc., Sunderland, Massachusetts, pp. 3–27.

    Google Scholar 

  • Templeton, A.R., Crandall, K.A. and Sing, C.F. (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132: 619–633.

    PubMed  CAS  Google Scholar 

  • Templeton, A.R. (1993) The “Eve” hypothesis: a genetic critique and reanalysis. Amer. Anthropol. 95: 51–72.

    Article  Google Scholar 

  • Templeton, A.R. and Sing, C.F. (1993) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. IV. Nested analyses with cladogram uncertainty and recombination. Genetics 134: 659–669.

    PubMed  CAS  Google Scholar 

  • Templeton, A.R., Routman, E. and Philips, C. (1993) Separating population structure from population history with haplotype trees: an example with ambystomid salamanders. Washington University.

    Google Scholar 

  • Whittemore, A.T. (1993) Species concepts: a reply to Ernst Mayr. Taxon 42: 573–583.

    Article  Google Scholar 

  • Wiley, E.O. (1981) Phylogenetics: The Theory and Practice of Phylogenetic Systematics. Addison Wiley, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Basel AG

About this chapter

Cite this chapter

Templeton, A.R. (1994). The role of molecular genetics in speciation studies. In: Schierwater, B., Streit, B., Wagner, G.P., DeSalle, R. (eds) Molecular Ecology and Evolution: Approaches and Applications. Experientia Supplementum, vol 69. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7527-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7527-1_26

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-7529-5

  • Online ISBN: 978-3-0348-7527-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics