Skip to main content

The Reciprocity Law from Euler to Eisenstein

  • Chapter

Part of the book series: Science Networks · Historical Studies ((SNHS,volume 15))

Abstract

The Reciprocity Law plays a very central rôle in number theory. It grew out of the theory of quadratic forms. The Quadratic Reciprocity Law was first formulated by Euler and Legendre and proved by Gauss and partly by Legendre. The search for higher reciprocity laws gave rise to the introduction and study of the Gaussian integers and more generally of algebraic numbers. Analytic methods introduced by Euler and Dirichlet in connection with the study of sets of prime numbers and primes in arithmetic progressions and their generalization by Dedekind and Weber to algebraic number fields led to a general form of the reciprocity law found and proved by Artin. This Reciprocity Law of Artin which can be considered as being an abelian reciprocity law plays a central rôle in class field theory. It is the starting point for a search of a more general non-abelian reciprocity law, a hint to whose existence is given by Langlands’ program.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Paul Bachmann: Über Gauss’ zahlentheoretische Arbeiten. In ‘Materialien für eine wissenschaftliche Biographie von Gauss. Gesammelt von F. Klein und M. Brendel’. Leipzig 1911.

    Google Scholar 

  2. Mary Joan Collison: The Origins of the Cubic and Biquadratic Reciprocity Laws. Archive Hist. Exact Sciences 17 (1977), 63–69.

    MathSciNet  MATH  Google Scholar 

  3. Richard Dedekind: Über die Theorie der ganzen algebraischen Zahlen. Supplement XI of Dirichlets Vorlesungen über Zahlentheorie. Braunschweig (Vieweg) 1894.

    Google Scholar 

  4. Diophanti Alexandrini Opera cum omnia Graecis commentariis, ed. Paulus Tannery. Leipzig (Teubner) 1893–1895, 2 vol.

    Google Scholar 

  5. Gotthold Eisenstein: Mathematische Werke. New York (Chelsea) 1989, 2nd edition (first edition 1975).

    Google Scholar 

  6. Leonardi Euleri: Opera Omnia,…, 1911-, (Teubner, Birkhäuser)

    Google Scholar 

  7. Günther Frei: On the Development of the Genus of Quadratic Forms. Ann. Sei. Math. Quebec 3 (1979), 5–62.

    MathSciNet  MATH  Google Scholar 

  8. Günther Frei: Leonhard Euler’s convenient numbers. Math. Intelligencer 3 (1985), 55–58 and 64.

    Article  MATH  Google Scholar 

  9. Carl Friedrich Gauss: Disquisitiones Arithmeticae. Leipzig 1801. Also in Vol. 1 of Gauss, Werke, Göttingen 1870 and in ‘Untersuchungen über höhere Arithmetik’, ed. H. Maser, Berlin 1889 (see [Ga-1889]) or the new English edition by Waterhouse, Springer 1989.

    Google Scholar 

  10. Carl Friedrich Gauss: Theorie der biquadratischen Reste. Zweite Abhandlung. In ‘Untersuchungen über höhere Arithmetik’, ed. H. Maser, Berlin 1889, 534–586 (see also [Ga-1889]).

    Google Scholar 

  11. Carl Friedrich Gauss: Werke. 12 vol. Göttingen 1870–1929.

    Google Scholar 

  12. Carl Friedrich Gauss: Untersuchungen über höhere Arithmetik, ed. H. Maser, Berlin 1889. Reprints New York (Chelsea) 1965, 1981.

    MATH  Google Scholar 

  13. J.J. Gray: A Commentary on Gauss’s Mathematical Diary, 1796–1814 with an English translation. Expositiones Mathematicae 2 (1984), 97–130.

    MathSciNet  MATH  Google Scholar 

  14. Kenneth Ireland, Michael Rosen: A Classical Introduction to Modern Number Theory. Springer 1990. 2nd edition. First edition 1981.

    MATH  Google Scholar 

  15. C.G.J. Jacobi’s Gesammelte Werke, ed. K. Weierstrass. 8 vol. Berlin 1881–1891. Reprint New York (Chelsea) 1969.

    Google Scholar 

  16. Leopold Kronecker’s Werke, ed. K. Hensel. Leipzig 1895–1931. 5 vol.

    Google Scholar 

  17. A.M. Legendre: Essai sur la Théorie des Nombres. Paris (Duprat) 1798.

    Book  Google Scholar 

  18. André Weil: Number Theory. An approach through history… Birkhäuser 1983. This paper was supported by a grant from the Canadian Research Council. I would also like to thank François Grondin for putting my manuscript into TEX.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Birkhäuser Verlag

About this chapter

Cite this chapter

Frei, G. (1994). The Reciprocity Law from Euler to Eisenstein. In: Sasaki, C., Sugiura, M., Dauben, J.W. (eds) The Intersection of History and Mathematics. Science Networks · Historical Studies, vol 15. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7521-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7521-9_6

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7523-3

  • Online ISBN: 978-3-0348-7521-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics