Skip to main content

The Origins of Infinite Dimensional Unitary Representations of Lie Groups

  • Chapter
The Intersection of History and Mathematics

Part of the book series: Science Networks · Historical Studies ((SNHS,volume 15))

  • 613 Accesses

Abstract

The systematic investigation of infinite dimensional unitary representations of Lie groups began with the works of V. Bargmann[1947] on SL(2, R) and I. M. Gelfand-M. A. Naimark[1947] on SL(2,C). The theory of the finite dimensional representations of Lie algebras and Lie groups had been established by E. Cartan[1913] and H. Weyl[1925/26], [1934/35]. However the finite dimensional theory did not develop spontaneously into the infinite dimensional one. The purpose of this paper is to study the circumstances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bargmann, V., 1947, Irreducible unitary representations of the Lorentz group, Ann. Math. 48, 568–640.

    Article  MathSciNet  MATH  Google Scholar 

  2. Born, M., 1926, Quantenmechanik der Stossvorgänge, Zeit, für Physik 38, 803.

    Article  Google Scholar 

  3. Cartan, E., 1909, Les groupes de transformations continus, infinis, simples, Ann. Ec. Norm. sup. 26, 93–161.

    MathSciNet  Google Scholar 

  4. Cartan, E., 1913, Les groupes projectifs qui ne laissent invariante aucune multiplicité plane, Bull. Soc. Math. France 41, 53–96.

    MathSciNet  MATH  Google Scholar 

  5. Cartan, E., 1929, Sur les détermination d’un système orthogonal complet dans un espace de Riemann symétrique clos, Rend. Circ. mat. Palermo, 8, 181–225.

    Google Scholar 

  6. Dieudonné, J., 1948, Sur le théorème de Lebesgue-Nykodym (III), Ann. Univ. Grenoble 23, 24–53.

    Google Scholar 

  7. Dieudonné, J., 1981, History of Functional Analysis, North-Holand, Amsterdam.

    MATH  Google Scholar 

  8. Dirac, P. A. M., 1945, Unitary representations of the Lorentz group, Proc. Roy. Soc. A 183, 284–295.

    Article  MathSciNet  MATH  Google Scholar 

  9. Freudenthal, H., 1936, Topologischen Gruppen mit genügend vielen fastperiodischen Funktionen, Ann. Math. 37, 57–77.

    Article  MathSciNet  Google Scholar 

  10. Frobenius, F. G., 1897, Über die Darstellung der endlichen Gruppen durch linearen Substitutionen, Sitz. Preuss. Akad. Wiss. Berlin, 944–1015.

    Google Scholar 

  11. Frobenius, F. G., 1898, Über Relationen zwischen den Charakteren einer Gruppen und denen ihrer Untergruppen, ibid. 501–515.

    Google Scholar 

  12. Gelfand, I. M.-Naimark, M. A., 1947, Unitary representations of the Lorentz group (Russian), Izv. Akad. Nauk SSSR ser. Mat. 11, 414–504

    MathSciNet  Google Scholar 

  13. Gelfand, I. M.- Raikov, D. A., 1943, Irreducible unitary representations of locally compact groups (Russian), Mat. Sbornik 13, 301–319.

    MathSciNet  Google Scholar 

  14. Harish-Chandra, 1947, Infinite irreducible representations of the Lorentz group, Proc. Roy. Soc. A 189, 372–401.

    Article  MathSciNet  Google Scholar 

  15. Harish-Chandra, 1952, Plancherel formula for the 2x2 real unimodular group, Proc. Nat. Acad. Sci. 38, 337–342.

    Article  MathSciNet  MATH  Google Scholar 

  16. Haar, A., 1933, Der Massbegriff in der Theorie der kontinuierlichen Gruppen, Ann. Math. 34, 147–169.

    Article  MathSciNet  Google Scholar 

  17. Hawkins, Th., 1982, Wilhelm Killing and the structure of Lie algebras, Arch.Hist.exact Sci. 26, 127–192

    Article  MathSciNet  MATH  Google Scholar 

  18. Hawkins, Th., 1988, Hesse’s principle of transfer and the representation of Lie algebras, Arch. Hist, exact Sci. 39, 41–73.

    Article  MathSciNet  MATH  Google Scholar 

  19. Heisenberg, W., 1925, Über quantentheoretisch Umdeutung kinematischer Beziehungen, Zet. für Physik 33, 879–893.

    Article  Google Scholar 

  20. Helgason, S., 1966, A duality in integral geometry on symmetric spaces, Proc. of the U.S.-Japan Seminar in Differential Geometry, Kyoto, 1965, Nippon Hyoronsha, Tokyo.

    Google Scholar 

  21. How, R., 1980, On the role of the Heisenberg group in harmonic analysis, Bull. A. M. S. 3, 821–843.

    Article  Google Scholar 

  22. Hurwitz, A., 1897, Über die Erzeugung der Invarianten durch Integration, Gott. Nachr. 71–90.

    Google Scholar 

  23. Ito, S., 1952/53, Unitary Representations of Some Linear Groups I, II, Nagoya Math. J. 4, 1–13; 5, 79–96.

    MathSciNet  MATH  Google Scholar 

  24. Killing, W., 1888–1890, Die Zusammensetzung der stetigen endlichen Transformationsgruppen, Math. Ann. 31, 252–290, 33, 1–48, 34, 57–122.

    Article  MathSciNet  Google Scholar 

  25. Kirillov, A. A., 1962, Unitary representations of nilpotent Lie groups, Russ. Math. Surv. 17, 53–104.

    Article  MathSciNet  MATH  Google Scholar 

  26. Mackey, G. W., 1952, Induced representations of locally compact groups, Ann. Math. 55, 101–139.

    Article  MathSciNet  MATH  Google Scholar 

  27. Mackey, G. W., 1980, Harmonic analysis as the exploitation of symmetrya historical survey, Bull. A.M.S. 3, 543–698.

    Article  MathSciNet  MATH  Google Scholar 

  28. Murray, F.J.,- von Neumann, J., 1936, On rings of operators, Ann. Math. 37, 116–229.

    Article  Google Scholar 

  29. Peter, F.- Weyl, H., 1927, Die Vollständigkeit der primitiven Darstellungen einer geschlossenen kontinuierlichen Gruppen, Math. Ann. 97, 737–755.

    Article  MathSciNet  MATH  Google Scholar 

  30. Pontrjagin, L. S., 1934, The theory of topological commutative groups, Ann. Math. 35, 361–388.

    Article  MathSciNet  Google Scholar 

  31. Schrödinger, E., 1926, Quantesierung als Eigenwertproblem I-V, Ann. Physik, 79;361, 489; 80;437; 81;109.

    Article  MATH  Google Scholar 

  32. Serre, J. P., 1954, Représentations linéaires et espaces homogènes kähleriens des groupes de Lie compacts, Sém. Bourbaki(1953/54), n° 100, Inst, H.Poincaré, Paris.

    Google Scholar 

  33. Stone, M. H., 1930, Linear transformations in Hilbert space III, operational methods and group theory, Proc. Nat. Acad. Sci. 16, 172–175.

    Article  MATH  Google Scholar 

  34. Stone, M. H., 1932, On one-parameter unitary groups in Hilbert space, Ann. Math. 33, 645–648.

    Article  Google Scholar 

  35. Sugiura, M., 1962, Representations of compact groups realized by spherical functions on symmetric spaces, Proc. Japan Acad. 38, 111–113.

    Article  MathSciNet  MATH  Google Scholar 

  36. van Kampen, E., 1935, Locally bicompact abelian groups and their character groups, Ann. Math. 36, 448–456.

    Article  Google Scholar 

  37. von Neumann, J., 1927a, Mathematische Begründung der Quantenmechanik, Gott. Nachr., 1–57.

    Google Scholar 

  38. von Neumann, J., 1927b, Wahrscheinlichkeittheoretischer Aufbau der Quantenmechanik, Gott. Nachr., 245–272.

    Google Scholar 

  39. von Neumann, J., 1931, Die Eindeutigkeit der S ehr ö ding er sehen Operatoren, Math Ann. 104, 570–578.

    Article  MathSciNet  Google Scholar 

  40. von Neumann, J., 1932, Mathematische Grundlagen der Quantenmechanik, Springer, Berlin.

    MATH  Google Scholar 

  41. von Neumann, J., 1933, Die Einführung analystischer Parameter in topolo-gischen Gruppen, Ann. Math. 34, 170–190.

    Article  Google Scholar 

  42. von Neumann, J., 1940, On rings of operators III, Ann. Math. 41, 87–93.

    Article  Google Scholar 

  43. von Neumann, J.- Wigner, E., 1940, On minimally almost periodic groups, Ann. Math. 41, 746–750.

    Article  Google Scholar 

  44. Weil, A., 1940, L’intégration dans les groupes topologiques et ses applications, Hermann, Paris.

    Google Scholar 

  45. Weil, A., 1979, Collected Papers 3 vols, Springer, Berlin.

    Google Scholar 

  46. Weyl, H., 1925/26, Theorie der Darstellung kontinuierlicher halb-einfacher Gruppen durch linearen Transformationen I, II, III, Math. Zeit. 23, 271–309; 24, 328–395.

    Article  MathSciNet  Google Scholar 

  47. Weyl, H., 1927, Quantenmechanik und Gruppentheorie, Zeit, für Physik 46, 1–46.

    Article  Google Scholar 

  48. Weyl, H., 1928, Gruppentheorie und Quantenmechanik, Hirzel, Leipzig.

    MATH  Google Scholar 

  49. Weyl, H., 1934/35, The structure and representations of continuous groups, Lecture Note taken by N. Jacobson and R. Brauer, The Inst, for Advanced Study, Princeton.

    Google Scholar 

  50. Weyl, H., 1939, The Classical Groups, their Invariants and Representations, Princeton Univ. Press, Princeton.

    Google Scholar 

  51. Wigner, E., 1939, On unitary representations of the inhomogeneous Lorentz group, Ann. Math. 40, 149–204.

    Article  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Birkhäuser Verlag

About this chapter

Cite this chapter

Mitsuo, S. (1994). The Origins of Infinite Dimensional Unitary Representations of Lie Groups. In: Sasaki, C., Sugiura, M., Dauben, J.W. (eds) The Intersection of History and Mathematics. Science Networks · Historical Studies, vol 15. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7521-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7521-9_15

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7523-3

  • Online ISBN: 978-3-0348-7521-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics