Skip to main content

Symmetry Breaking in Dynamical Systems

  • Conference paper
Nonlinear Dynamical Systems and Chaos

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 19))

Abstract

Symmetry breaking bifurcations and dynamical systems have obtained a lot of attention over the last years. This has several reasons: real world applications give rise to systems with symmetry, steady state solutions and periodic orbits may have interesting patterns, symmetry changes the notion of structural stability and introduces degeneracies into the systems as well as geometric simplifications. Therefore symmetric systems are attractive to those who study specific applications as well as to those who are interested in a the abstract theory of dynamical systems. Dynamical systems fall into two classes, those with continuous time and those with discrete time. In this paper we study only the continuous case, although the discrete case is as interesting as the continuous one. Many global results were obtained for the discrete case. Our emphasis are heteroclinic cycles and some mechanisms to create them. We do not pursue the question of stability. Of course many studies have been made to give conditions which imply the existence and stability of such cycles. In contrast to systems without symmetry heteroclinic cycles can be structurally stable in the symmetric case. Sometimes the various solutions on the cycle get mapped onto each other by group elements. Then this cycle will reduce to a homoclinic orbit if we project the equation onto the orbit space. Therefore techniques to study homoclinic bifurcations become available. In recent years some efforts have been made to understand the behaviour of dynamical systems near points where the symmetry of the system was perturbed by outside influences. This can lead to very complicated dynamical behaviour, as was pointed out by several authors. We will discuss some of the technical difficulties which arise in these problems. Then we will review some recent results on a geometric approach to this problem near steady state bifurcation points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. C. Alexander & J. Yorke. Global bifurcation of periodic orbits. Amer. J. Math, 100, 263–292, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Armbruster & P. Chossat. Heteroclinic cycles in a spherically invariant system. Physica 50D, 155–176, 1991.

    MathSciNet  Google Scholar 

  3. P. Ashwin & Z. Mei. A Hopf bifurcation with Robbin boundary conditions. J. Dyn. Diff. Equat., 6(3), 487–505, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  4. U. Bandelow, H.J. Wünsche & H. Wenzel. Theory of selfpulsation in two-section DFB lasers. IEEE Photonics Technol Lett., 5, 1176–1179, 1993.

    Article  Google Scholar 

  5. G. E. Bredon. Introduction to Compact Transformation Groups. Academic Press, 1972.

    MATH  Google Scholar 

  6. E. Buzano, G. Geymonat & T. Poston. Post-buckling behavior of a nonlinear-lyhyperelastic thin rod with cross-section invariant under the dihedral group D n . Arch. Rat. Mech. Anal., 89(4), 307–388, 1985.

    MathSciNet  MATH  Google Scholar 

  7. P. Chossat. Le Problème de Bénard dans une Couche Sphérique. PhD thesis, Nice, 1981.

    Google Scholar 

  8. P. Chossat & D. Armbruster. Structurally stable heteroclinic cycles in a system with O(3)-symmetry. In M. Roberts & I. Stewart, editors, Singularity Theory and Its Applications, Warwick 1989, Part II, 38–62. Springer Verlag, 1991. Lecture Notes in Mathematics 1463.

    Google Scholar 

  9. P. Chossat & M. Field. Geometric analysis of the effect of symmetry breaking on an O(2)-invariant homoclinic cycle. Preprint, 1992.

    Google Scholar 

  10. P. Chossat & F. Guyard. Heteroclinic cycles in bifurcation problems with O(3) symmetry and the spherical BĂ©nard problem. Preprint, 1995.

    Google Scholar 

  11. P. Chossat, R. Lauterbach & I. Melbourne. Steady-state bifurcation with O(3)-symmetry. Arch. Rat. Mech. Anal., 113(4), 313–376, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  12. G. Cicogna. Symmetry breakdown from bifurcation. Lettere al Nuovo Cimento, 31, 600–602, 1981.

    Article  MathSciNet  Google Scholar 

  13. G. Dangelmayr & E. Knobloch. Hopf bifurcation with broken circular symmetry. Nonlinearity, 4, 399–428, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  14. B. Dionne, M. Golubitsky & I. Stewart. Coupled cells with internal symmetry part i: Wreath products. Preprint, (to appear).

    Google Scholar 

  15. B. Dionne, M. Golubitsky & I. Stewart. Coupled cells with internal symmetry part ii: Direct products. Preprint, (to appear).

    Google Scholar 

  16. U. Feiste, D. J. As & A. Erhard. 18 ghz all-optical frequency locking and clock recovery using a self-pulsating two section sDFB laser. IEEE Photonics Technol. Lett., 6, 106–108, 1994.

    Article  Google Scholar 

  17. M. Field. Symmetry Breaking for Compact Lie Groups. Preprint. 1994.

    Google Scholar 

  18. Gap. Program.

    Google Scholar 

  19. K. Gatermann & R. Lauterbach. Automatic classification of normal forms. Preprint, 1995.

    Google Scholar 

  20. M. Golubitsky & D. G. Schaeffer. A discussion of symmetry and symmetry breaking. Proc. Symp. Pure Math., 40, 499–515, 1982.

    Article  MathSciNet  Google Scholar 

  21. M. Golubitsky & I. Stewart. Hopf bifurcation in presence of symmetry. Arch. Rat. Mech. Anal, 87(2), 107–165, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Golubitsky. I. Stewart & D. G. Schaeffer. Singularities and Groups in Bifurcation Theory, Vol. II. Springer Verlag, 1988.

    Book  MATH  Google Scholar 

  23. J. Guckenheimer & P. Holmes. Structurally stable heteroclinic cycles. Math. Proc. Cambridge Phil. Soc, 103, 189–192, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  24. F. Guyard. Interactions de mode dans les problèmes de bifurcation avec symétry sphérique. PhD thesis. Université de Nice Sophia — Antipolis, 1994.

    Google Scholar 

  25. E. Hewitt & K. A. Ross. Abstract Harmonic Analysis I, volume 115 of Grundl. d. math. Wiss. Springer Verlag, 1963.

    Book  MATH  Google Scholar 

  26. M. W. Hirsch. C. C. Pugh & M. Shub. Invariant Manifolds, volume 583 of Lecture Notes in Mathematics. Springer Verlag. 1977.

    MATH  Google Scholar 

  27. P. Hirschberg & E. Knobloch. SiPnikov-Hopf bifurcation. Physica D, 62, 202–216, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  28. E. Ihrig & M. Golubitsky. Pattern selection with O(3)-symmetry. Physica 13D, 1–33. 1984.

    MathSciNet  Google Scholar 

  29. M. Krupa. Robust heteroclinic cycles. Preprint. 1994.

    Google Scholar 

  30. M. Krupa & I. Melbourne. Asymptotic stability of heteroclinic cycles in systems with symmetry. Preprint, 1–50, 1991.

    Google Scholar 

  31. M. Krupa & I. Melbourne. Nonasymptotically stable attractors in O(2) mode interactions. Preprint, 1993.

    Google Scholar 

  32. S. Lang. Algebra. Addison-Wesley, 1970.

    MATH  Google Scholar 

  33. R. Lauterbach. Problems with Spherical Symmetry — Studies on O(3)-Equivamant Equations. Habilitationsschrift, Univ. Augsburg. 1988.

    Google Scholar 

  34. R. Lauterbach. Aquivariante dynamische Systeme. Vorlesung FU Berlin, SS 1995.

    Google Scholar 

  35. R. Lauterbach, S. Maier & E. Reissner. A systematic study of heteroclinic cycles in dynamical system with broken symmetries. Proc. Roy. Soc. Edinb., to appear.

    Google Scholar 

  36. R. Lauterbach & M. Roberts. Heteroclinic cycles in dynamical systems with broken spherical symmetry. J. Diff. Equal., 100. 428–448. 1992.

    MathSciNet  Google Scholar 

  37. R. Lauterbach & M. Roberts. (In preparation.)

    Google Scholar 

  38. R. Lauterbach & J. Sanders. Bifurcation analysis for spherically symmetric systems using invariant theory. Preprint, 1994.

    Google Scholar 

  39. S. Maier-Paape & R. Lauterbach. Reaction diffusion systems on the 2-sphere and forced symmetry breaking. Preprint, in preparation.

    Google Scholar 

  40. I. Melbourne. An example of a non-asymptotically stable attractor. Nonlinearity, 4, 835–844, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  41. I. Melbourne, P. Chossat & M. Golubitsky. Heteroclinic cycles involving periodic solutions in mode interactions with O(2)-symmetry. Proc. Roy. Soc. Edinb., 113(5). 315–345, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  42. M. Möhrle, U. Feiste, J. Hörer, R. Molt & B. Satorins. Gigahertz self-pulsation in 1.5 μm wavelength multisection DFB lasers. IEEE Photonics Technol. Letter. 4, 976–979, 1992.

    Article  Google Scholar 

  43. E. Reissner. Dynamische Systeme und erzwungene Symmetriebrechung am Beispiel sphärischer Probleme. Master’s thesis, Univ. Augsburg. 1993.

    Google Scholar 

  44. B. Sandstede & A. Scheel. Forced symmetry breaking of homoclinic cycles. Nonlinearity, 8, 333–365, 1994.

    Article  MathSciNet  Google Scholar 

  45. D.H. Sattinger. Group Theoretic Methods in Bifurcation Theory, volume 762 of Lecture Notes in Mathematics. Springer Verlag. 1978.

    Google Scholar 

  46. G. Schwarz. Lifting smooth homotopies. IHES. 51, 37–135, 1980.

    MATH  Google Scholar 

  47. J.-P. Serre. Représentations Linéaires des Groupes Finis. Herrmann, 1978.

    MATH  Google Scholar 

  48. A. Vanderbauwhede. Local Bifurcation and Symmetry, volume 75 of Research Notes in Mathematics. Pitman, 1982.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Basel AG

About this paper

Cite this paper

Lauterbach, R. (1996). Symmetry Breaking in Dynamical Systems. In: Broer, H.W., van Gils, S.A., Hoveijn, I., Takens, F. (eds) Nonlinear Dynamical Systems and Chaos. Progress in Nonlinear Differential Equations and Their Applications, vol 19. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7518-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7518-9_6

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-7520-2

  • Online ISBN: 978-3-0348-7518-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics