Skip to main content

Hamiltonian Perturbation Theory for Concentrated Structures in Inhomogeneous Media

  • Conference paper
Nonlinear Dynamical Systems and Chaos

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 19))

  • 563 Accesses

Abstract

We consider spatially inhomogeneous Hamiltonian systems for which the rate of change of the inhomogeneity is small. Connected to these systems is a 1-parameter family of homogenized versions, for which spatial variations vanish. Special solutions of these homogenized systems are relative equilibrium solutions: a 2-parameter manifold of solutions which are translations of an extremizer of the energy constrained to levelsets of momentum. A solution of the inhomogeneous system which describes the distortion of such a relative equilibrium solution is approximated using relative equilibrium states with the 3 parameters evolving in time in a way to be specified. The dynamics of the parameters is obtained using (i) a geometrically motivated projection argument, (ii) a dynamical consistent evolution of global quantities (energy and momentum), and (iii) a Fredholm-type of argument from a mathematical investigation of the error. The results are shown to be equivalent. The Fredholm-argument implies that the approximation is valid on spatial-temporal scales on which deformations are of order one, thereby justifying the physically more attractive method of consistent evolution. All results are illustrated to the motion of a Bloch wall in an inhomogeneous ferro-magnetic material.

This research has been supported by the Netherlands Organization for Scientific Research, NWO, by contract 620-61-249.

Part of the research is sponsored by the Commission of the European Communities, Directorate General XII-B, Joint Research Project CI1*-CT93-0018 between the Department of Mathematics. Institut Teknologi Bandung, Indonesia, and the Faculty of Applied Mathematics, University of Twente, The Netherlands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aceves, A., Adachihara, H., Jones, C., Lerman, J.C., McLaughlin, D.W., Moloney, J.V., and Newell, A.C. Chaos and coherent structures in partial differential equations. Physica 18(D), 85–112, 1986.

    MathSciNet  MATH  Google Scholar 

  2. Blommers, B., and Booij, W. Periodic solition solutions for a perturbed sine-Gordon equation (in Dutch). Technical report, University of Twente, 1992.

    Google Scholar 

  3. Buitelaar, R.P. The method of averaging in Banach spaces: theory and application. PhD-thesis, Univ. of Utrecht, 1993.

    Google Scholar 

  4. Calogero, F., and Eckhaus, W. Nonlinear evolution equations, rescalings, model PDE’s and their integrability: II. Inverse Problems, 4, 11–33, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  5. Carr, J. Applications of Centre Manifold Theory. Springer-Verlag, New York, 1981.

    Book  MATH  Google Scholar 

  6. Derks, G. Coherent structures in the dynamics of perturbed Hamiltonian systems. PhD-thesis, University of Twente, 1992.

    Google Scholar 

  7. Derks, G., and Groesen, E. van. Dissipation in Hamiltonian systems: Decaying cnoidal waves. To be pubished, SIAM J. Math. Anal., 1995.

    Google Scholar 

  8. Fledderus, E.R., and Groesen, E. van. Critical swirling flows in expanding pipes, Part II. To be published, SIAM J. Math. An. Appl., 1995.

    Google Scholar 

  9. Fledderus, E.R., and Groesen, E. van. Deformation of coherent structures in inho-mogeneous media. Rep. Progr. Phys., forthcoming, 1995.

    Google Scholar 

  10. Groesen, E. van, Beckum, F.P.H. van, and Valkering, T.P. Decay of travelling waves in dissipative Poisson systems. ZAMP, 41, 501–523, 1990.

    Article  MATH  Google Scholar 

  11. Groesen, E. van, Fliert, B.W. van de, and Fledderus, E. Quasi-homogeneous critical swirling flows in expanding pipes, I. SIAM J. Math. An. Appl., 192. 764–788, 1995.

    MATH  Google Scholar 

  12. Groesen, E. van. A Hamiltonian Perturbation Theory for Coherent Structures illustrated to wave problems. Proceedings of the IUTAM/ISIMM Symposium, Hannover, Germany, 1995.

    Google Scholar 

  13. Leeuw F.H. de, Doei, R. van den, and Enz, U. Dynamic properties of magnetic domain walls and magnetic bubbles. Rep. Prog. Phys. 43, 689–783. 1980.

    Article  Google Scholar 

  14. Hale, J.K. Ordinary differential equations. Wiley-Interscience, New York, 1969.

    MATH  Google Scholar 

  15. Karpman, V.I., and Solov’ev, V.V. The influence of perturbations on the shape of a sine-Gordon soliton. Phys. Lett., 84A(2), 39–41, 1981.

    MathSciNet  Google Scholar 

  16. Kato, T. Perturbation Theory for Linear Operators. Springer-Verlag, New York, 1966.

    MATH  Google Scholar 

  17. Kivshar, Y.S., and Malomed, B.A. Dynamics of solitons in nearly integrable systems. Rev. Mod. Phys. 61(4), 763–915, 1989.

    Article  Google Scholar 

  18. Krol, M.S. The Method of Averaging in Partial Differential Equations. PhD-thesis, Univ. of Utrecht, 1990.

    Google Scholar 

  19. Nayfeh, A.H. Introduction to Perturbation Techniques. Wiley, New York, 1993.

    Google Scholar 

  20. Olsen, O.H., and Samuelsen, M.R. Sine-Gordon 27r-kink dynamics in the presence of small perturbations. Phys. Rev. B, 28(1), 210–217, 1983.

    Article  Google Scholar 

  21. Pudjaprasetya, S.R., and Groesen, E. van. Uni-directional waves over slowly varying bottom. Part II: Quasi-homogeneous approximation of distorting waves. To be published, Wave Motion, 1995.

    Google Scholar 

  22. Sakai, S., Samuelsen, M.R., and Olsen, O.H. Perturbation analysis of a parametrically changed sine-Gordon equation. Phys. Rev. B, 36(1), 217–225, 1987.

    Article  Google Scholar 

  23. Salerno, M., Samuelsen, M.R., Lomdahl, P.S., and Olsen O.H. Non-dissipative perturbations in the sine-Gordon system. Phys. Lett. 108A, 241–244, 1985.

    Google Scholar 

  24. Sanders, J.A., and Verludst, F. Averaging Methods in Nonlinear Dynamical Systems. Springer-Verlag, New York, 1985.

    Book  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Basel AG

About this paper

Cite this paper

Fledderus, E.R., van Groesen, E. (1996). Hamiltonian Perturbation Theory for Concentrated Structures in Inhomogeneous Media. In: Broer, H.W., van Gils, S.A., Hoveijn, I., Takens, F. (eds) Nonlinear Dynamical Systems and Chaos. Progress in Nonlinear Differential Equations and Their Applications, vol 19. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7518-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7518-9_16

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-7520-2

  • Online ISBN: 978-3-0348-7518-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics