Skip to main content

The Dynamical Foundations of Classical Statistical Mechanics and the Boltzmann-Jeans Conjecture

  • Chapter
Seminar on Dynamical Systems

Overview

It is well known that the equipartition principle lies at the very basis of classical statistical mechanics. It is also known that the greatest difficulty with classical statistical mechanics is that some degrees of freedom seem to be frozen, and not to attain the energy expected from that principle. The problem we want to discuss here is whether such a phenomenon can be understood on a dynamical basis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. I. Khinchin: Mathematical foundations of Statistical Mechanics, Dover, New York (1949).

    Google Scholar 

  2. L. Boltzmann: Nature 51, 413–415 (1895).

    Article  Google Scholar 

  3. J. H. Jeans: Phil. Magazine 6, 279 (1903) and

    Article  Google Scholar 

  4. J. H. Jeans: Phil. Magazine 10, 91 (1905).

    Article  Google Scholar 

  5. L. Galgani: Relaxation Times and the Foundations of Classical Statistical Mechanics in the Light of Modern Perturbation Theory, in Non-Linear Evolution and Chaotic Phenomena, G. Gallavotti and A.M. Anile Editors, Plenum Press, New York (1988).

    Google Scholar 

  6. E. Fermi, J. Pasta and S. Ulam: Los Alamos report No. LA-1940, later published in Lect. Appl. Math. 15, 143 (1955).

    Google Scholar 

  7. A. N. Kolmogorov: Dokl. Akad. Nauk SSSR 98, 527–530 (1954);

    Google Scholar 

  8. J. Moser: Nachr. Akad. Wiss. Göttingen Math. Phys. Kl. II, 1–20 (1962);

    Google Scholar 

  9. V. I. Arnold: Russ. Math. Surv., 18, 9 (1963) and

    Article  Google Scholar 

  10. V. I. Arnold: Russ. Math. Surv. 18 N.6, 85 (1963).

    Article  Google Scholar 

  11. F. M. Izrailev and B. V. Chirikov: Sov. Phys. Dokl. 11, 30 (1966).

    Google Scholar 

  12. P. Bocchieri, A. Scotti, B. Bearzi and A. Loinger: Phys. Rev. A 2, 2013 (1970).

    Article  Google Scholar 

  13. M. Hénon and C. Heiles: Astron. J. 69 (1964).

    Google Scholar 

  14. E. Diana, L. Galgani, M. Casartelli, G. Casati and A. Scotti: Teor. Mat. Fiz. 29, 213 (1976)

    Article  Google Scholar 

  15. E. Diana, L. Galgani, M. Casartelli, G. Casati and A. Scotti: [Theor. Math. Phys. 29, 1022 (1976)];

    Article  Google Scholar 

  16. M. Casartelli, E. Diana, L. Galgani and A. Scotti: Phys. Rev. A 13, 1921 (1976);

    Article  Google Scholar 

  17. R. Livi, M. Pettini, S. Ruffo, M. Sparpaglione and A. Vulpiani: Phys. Rev. A 28, 3544 (1983);

    Article  Google Scholar 

  18. R. Livi, M. Pettini, S. Ruffo and A. Vulpiani: Phys. Rev. A 31, 2740 (1985).

    Article  Google Scholar 

  19. V. I. Arnold: Sov. Math. Dokl. 5, 581–585 (1964).

    Google Scholar 

  20. L. Chierchia and G. Gallavotti: Drift and diffusion in phase space, preprint CARR (1992).

    Google Scholar 

  21. N. N. Nekhoroshev: Russ. Math. Surveys 32 N.6, 1–65 (1977);

    Article  Google Scholar 

  22. N. N. Nekhoroshev: Trudy Sem. Petrovs. N.5, 5–50 (1979);

    Google Scholar 

  23. G. Benettin, L. Galgani and A. Giorgilli: Cel. Mech 37, 1–25 (1985).

    Article  Google Scholar 

  24. J. K. Moser: Nachr. Akad. Wiss. Göttingen, Math. Phys. Kl Ha, nr.6, 87–120 (1955);

    Google Scholar 

  25. J. E. Littlewood: Proc. London Math. Soc.(3), 9, 343–372 (1959) and

    Article  Google Scholar 

  26. J. E. Littlewood: Proc. London Math. Soc.(3), 9, 525–543 (1959).

    Article  Google Scholar 

  27. L. Galgani: The quest for Planck’s constant in classical physics, in F. Guerra, M. Loffredo and C. Marchioro eds., Probabilistic methods in mathematical physics, World Scientific, Singapore (1992).

    Google Scholar 

  28. G. Benettin, L. Galgani and A. Giorgilli: Phys. Lett. A, 120 N.1, 23–27 (1987).

    Article  Google Scholar 

  29. J. J. Erpenbeck and E.D.G. Cohen: Phys. Rev. A 38, 3058 (1988).

    Google Scholar 

  30. E. G. D. Cohen and A. Monge: Statistical mechanical behaviour of dynamical systems: a one-dimensional model of diatomic molecules, in Fundamental problems in Statistical Mechanics VII, H. van Beijeren ed., Elsevier Sc. Publ. B.V. (1990).

    Google Scholar 

  31. O. Baldan and G. Benettin: J. Stat. Phys. 62, 201 (1991).

    Article  Google Scholar 

  32. P. Sempio: Ph.D. thesis, in preparation.

    Google Scholar 

  33. L. Galgani, A. Giorgilli, A. Martinoli, and S. Vanzini: On the problem of energy equipartition for large systems of the Fermi-Pasta-Ulam type: analytical and numerical estimates, Physica D, to appear.

    Google Scholar 

  34. P. Lochak: Uspekhi Math. Nauk. (1992), to be translated in Russian Math. Surv.; Russian Math. Surv.; P. Lochak and A. Neishtadt: Chaos, (1992); J. Pöschel: Math. Zeitschrift, to appear.

    Google Scholar 

  35. A. I. Neishtadt: Prikl. Matem. Mekan. 45, 80 (1981) and

    Google Scholar 

  36. A. I. Neishtadt: PMM U.S.S.R. 45, 58 (1982);

    Google Scholar 

  37. G. Benettin, L. Galgani and A. Giorgilli: Comm. Math. Phys., 113, 87–103, (1987).

    Article  Google Scholar 

  38. G. Benettin, L. Galgani and A. Giorgilli: Comm. Math. Phys., 121, 557–601, (1989).

    Article  Google Scholar 

  39. D. Bambusi and A. Giorgilli: Exponential stability of states close to resonance in infinite dimensional Hamiltonian systems, J. Stat. Phys., to appear.

    Google Scholar 

  40. D. Escande, H. Kantz, R. Livi and S. Ruffo: Gibbsian check of the validity of Gibbsian calculations through dynamical observables, preprint.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Basel AG

About this chapter

Cite this chapter

Benettin, G., Galgani, L., Giorgilli, A. (1994). The Dynamical Foundations of Classical Statistical Mechanics and the Boltzmann-Jeans Conjecture. In: Kuksin, S., Lazutkin, V., Pöschel, J. (eds) Seminar on Dynamical Systems. Progress in Nonlinear Differential Equations and Their Applications, vol 12. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7515-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7515-8_1

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-7517-2

  • Online ISBN: 978-3-0348-7515-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics