Skip to main content

The cellular response to factors which induce motility in mammalian cells

  • Chapter
Cell Motility Factors

Part of the book series: Experientia Supplementum ((EXS,volume 59))

Abstract

This contribution is to discuss what effects occur to the ultrastructure of vertebrate cells, and in particular the cytoskeleton, when it responds to a factor which induces or enhances cell motility. Amongst biological agents which have this role are a number of growth and motility factors, and a variety of agents which stimulate leukocyte Chemotaxis, including formyl peptides (for a review see Rosen and Goldberg, 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abercrombie, M. (1980) The crawling movement of metazoan cells. Proc. R. Soc. Lond. (B) 207: 129–147.

    Article  Google Scholar 

  • Albrecht-Buehler, G. (1986) Autonomous movements of cytoplasmic fragments. Proc. Natl. Acad. Sci. USA 77: 6639–6643.

    Article  Google Scholar 

  • Anderson, J. M., Stevenson, B. R., Jesaitis, L. A., Goodenough, D. A., and Mooseker, M. S. (1988) Characterisation of ZO-1, a protein component of the tight junction from mouse liver and Madin-Darby canine kidney cells. J. Cell Biol 106: 1141–1149.

    Article  Google Scholar 

  • Bade, E. G., and Nitzgen, B. (1985) Extracellular matrix (ECM) modulates the EGF-induced migration of liver epithelial cells in serum-free, hormone-supplemented medium. In Vitro Cell. Dev. Biol. 21: 245–248.

    Article  Google Scholar 

  • Bade, E. G., and Feindler, S. (1988) Liver epithelial cell migration induced by epidermal growth factor or transforming growth factor alpha is associated with changes in the gene expression of secreted proteins. In Vitro Cell. Dev. Biol. 24: 149–154.

    Article  Google Scholar 

  • Badley, R. A., Couchman, J. R., and Rees, D. A. (1980) Comparison of the cell cytoskeleton in migratory and stationary chick fibroblasts. J. Mus. Res. Cell Motil. 1: 5–14.

    Article  Google Scholar 

  • Behrens, J., Birchmeier, W., Goodman, S. L., and Imhof, B. A. (1985) Dissociation of Madin-Darby canine kidney epithelial cells by the monoclonal antibody anti-Arc-1: Mechanistic aspects and identification of the antigen as a component related to uvomorulin. J. Cell Biol. 101: 1307–1315.

    Article  Google Scholar 

  • Ben-Ze’ev, A. (1986) The relationship between cytoplasmic organisation, gene expression and morphogenesis. TIBS 11: 478–481.

    Google Scholar 

  • Bernstein, B. W., and Bamburg, J. R. (1982) Tropomyosin binding to F-actin protects the F-actin from disassembly by brain depolymerising factor (ADF). Cell Motil. 2: 1–8.

    Google Scholar 

  • Bershadsky, A. D., Ivanova, O. Y., Lyass, L. A., Pletyushkina, O. Y., Vasiliev, J. M., and Gelfand, I. M. (1990) Cytoskeletal reorganisations responsible for the phorbol ester induced formation of cytoplasmic processes: possible involvement of intermediate filaments. Proc. Natl. Acad. Sci. USA 87: 1884–1888.

    Article  Google Scholar 

  • Bock, G., and Clark, S. eds. (1987) Junctional complexes of epithelial cells. Ciba Foundation Symposium 125. Wiley, Chichester, pp. 168–186.

    Google Scholar 

  • Beyer, B., Tucker, G. C., Valles, A. M., Franke, W. W., and Thiery, J. P. (1989) Rearrangements of desmosomal and cytoskeletal proteins during the transition from epitheUal to fibroblastoid organization in cultured rat bladder carcinoma cells. J. Cell Biol. 109: 1495–1509.

    Article  Google Scholar 

  • Bretscher, M. S. (1984) Endocytosis: relation to capping and cell locomotion. Science 224: 681–686.

    Article  Google Scholar 

  • Brunk, U., Schellens, J., and Westermark, B. (1976) Influence of epidermal growth factor (EGF) on ruffling activity, pinocytosis and proliferation of cultivated human glial cells. Exp. Cell Res. 103: 295–302.

    Article  Google Scholar 

  • Byers, H. R., and Fujiwara, K. (1982) Stress fibres in cells in situ: immunofluorescence visualization with anti-actin, anti-myosin and anti-alpha actinin. J. Cell Biol. 93: 804–811.

    Article  Google Scholar 

  • Burridge, K., Fath, K., Kelly, T., Nuckolls, G., and Turner C. (1988) Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Ann. Rev. Cell Biol. 4: 487–525.

    Article  Google Scholar 

  • Burridge, K., and Connell, L. (1983) Talin: a cytoskeletal component concentrated in adhesion plaques and other sites of actin-membrane interaction. Cell Motil. Cytoskel. 3: 405–417.

    Article  Google Scholar 

  • Carter, S. B. (1967) Effects of cytochalasins on mammalian cells. Nature 213: 261–264.

    Article  Google Scholar 

  • Chinkers, M., McKanna, J. A., and Cohen, S. (1979) Rapid induction of morphological changes in human carcinoma cells A-431 by epidermal growth factor. J. Cell Biol. 83: 260–265.

    Article  Google Scholar 

  • Conzelman, K. A., and Mooseker, M. S. (1987) The 110-kD protein calmodulin complex of the intestinal microvillus is an actin activated Mg-ATPase. J. Cell Biol. 105: 313–324.

    Article  Google Scholar 

  • Cooper, H. L., Feurerstein, N., Makoto, N., and Bassin, R. (1985) Suppression of tropomyosin synthesis, a common biochemical feature of oncogenesis by structurally diverse retroviral oncogenes. Mol. Cell Biol. 5: 972–983.

    Google Scholar 

  • Couchman, J. R., and Rees, D. A. (1979) The behaviour of fibroblasts migrating from chick heart explants: changes in adhesion, locomotion and growth, and in the distribution of actomyosin and fibronectin. J. Cell Sci. 39: 149–165.

    Google Scholar 

  • Davies, P. F., and Ross, R. (1980) Growth mediated, density dependent inhibition of endocytosis in cultured arterial smooth muscle cells. Exp. Cell Res. 129: 329–338.

    Article  Google Scholar 

  • DeLozanne, A., and Spudlich, J. A. (1987) Disruption of the Dictyostelium myosin heavy chain gene by homologous recombination. Science 236: 1086–1091.

    Article  Google Scholar 

  • Domnina, L. V., Gelfand, V. I., Ivanova, O. Y., Leonova, E. V., Pletjushikina, O. Y., Vasiliev, J. M., and Gelfand, I. M. (1982) Effects of small doses of cytochalasins on fibroblasts: Preferential changes of active edges and focal contacts. Proc. Natl. Acad. Sci. USA 79: 7754–7757.

    Article  Google Scholar 

  • Dowrick, P., and Warn, R. M. (1991) The effects of scatter factor on the cytoskeletal organisation of epithelial cells. Cancer Invest., 8: 675–683.

    Article  Google Scholar 

  • Dowrick, P., Prescott, A. R., and Warn, R. M. (1991) Scatter factor effects major changes in the cytoskeletal organisation of epithelial cells. Cytokine. In press.

    Google Scholar 

  • Dugina, V. B., Svitkina, T. M., Vasiliev, J. M., and Gelfand, I. M. (1985) Special type of morphological reorganisation induced by phorbol ester: Reversible partition of cell into motile and stable domains. Proc. Natl. Acad. Sci. USA 84: 4122–4125.

    Article  Google Scholar 

  • Euteneuer, U., and Schliwa, M. (1984) Persistent directional motility of cells and cytoplasmic fragments in the absence of microtubules. Nature 310: 58–61.

    Article  Google Scholar 

  • Farquahar, M. G., and Palade, G. E. (1963) Junctional complexes in various epithelia. J. Cell Biol. 45: 272–290.

    Google Scholar 

  • Fattoum, A., Hartwig, J. H., and Stossel, T. P. (1983) Isolation and some structural and functional properties of macrophage tropomyosin. Biochemistry 22: 1187–1193.

    Article  Google Scholar 

  • Fukui, Y., Lynch, T. J., Brzeska, H., and Kom, E. D. (1989) Myosin I is located at the leading edges of locomoting Dictyostelium amoebae. Nature 341: 326–331.

    Article  Google Scholar 

  • Geiger, B. (1979) A 130k protein from chick gizzard. Its localisation at the termini of microfilament bundles in cultured chicken cells. Cell 18: 193–205.

    Article  Google Scholar 

  • Geuze, H. J., Slot, J. W., Strous, J. A. M., Lodish, H. F., and Schwartz, A. L. (1983) Intracellular site of asialoglycoprotein receptor-ligand uncoupling: Double-label immunoelectron microscopy during receptor mediated endocytosis. Cell 32: 277–287.

    Article  Google Scholar 

  • Goldstein, J. L., Brown, M. S., Anderson, R. G. W., Russel, D. W., and Schneider, W. J. (1985) Receptor-mediated endocytosis. Ann. Rev. Cell. Biol. 1: 1–39.

    Article  Google Scholar 

  • Guirguis, R., Margulies, L, Taraboletti, G., Schiffmann, E., and Liotta, E. (1987) Cytokineinduced pseudopodial protrusion is coupled to tumour cell invasion. Nature 329: 261–263.

    Article  Google Scholar 

  • Gumbiner, B. (1987) Structure, biochemistry, and assembly of epithelial tight junctions. Am. J. Physiol. 253: C749-C758.

    Google Scholar 

  • Gumbiner, B., and Simons, K. (1986) The role of uvomorulin in the formation of epithelial occluding junctions, in: Junctional complexes of epithelial cells. Ciba Foundation Symposium 125. Wiley, Chichester, pp. 168–186.

    Google Scholar 

  • Gundersen, G. G., Kalnoski, M. H., and Bulinski, J. C. (1984) Distinct populations of microtubules: Tyrosinated and non-tyrosinated a-tubulin are distributed differentially in vivo. Cell 38: 779–789.

    Article  Google Scholar 

  • Gundersen, G. G., Khawaja, S., and Bulinski, J. C. (1987) Post-polymerisation detyrosination of a-tubulin: a mechanism for subcellular differentiation of microtubules. J. Cell Biol. 105: 251–264.

    Article  Google Scholar 

  • Haigler, H. T., McKanna, J. A., and Cohen, S. (1979a) Rapid stimulation of pinocytosis in human carcinoma cells A-431 by epidermal growth factor. J. Cell Biol. 83: 82–90.

    Article  Google Scholar 

  • Haigler, H. T., McKanna, J. A., and Cohen, S. (1979b) Direct visualisation of the binding and internalisation of epidermal growth factor in human carcinoma cells A-431. J. Cell Biol. 81: 382–395.

    Article  Google Scholar 

  • Heath, J. P., and Dunn, G. (1978) Cell to substratum contacts of chick fibroblasts and their relationship to the microfilament system. A correlated interference-reflexion and high voltage electron-microscopy study. J. Cell Sci. 29: 197–212.

    Google Scholar 

  • Hegmann, T. E., Lin, J. L., and Lin, J. J. (1988) Motility dependence of the heterogeneous staining of cultured cells by a monoclonal anti-tropomyosin antibody. J. Cell Biol. 106: 385–393.

    Article  Google Scholar 

  • Hendricks, M., and Weintraub, H. (1984) Multiple tropomyosin polypeptides in chicken embryo fibroblasts: differential repression of transcription by Rous sarcoma virus transformation. Mol. Cell Biol. 4: 1823–1833.

    Google Scholar 

  • Herman, I., Crisona, N. J., and Pollard, T. D. (1981) Relation between cell activity and the distribution of cytoplasmic actin and myosin. J. Cell Biol. 90: 84–91.

    Article  Google Scholar 

  • Höner, B., Citi, S., Kendrick-Jones, J., and Jockusch, B. (1988) Modulation of cellular morphology and locomotory activity by antibodies against myosin. J. Cell Biol. 107: 2181–2189.

    Article  Google Scholar 

  • Hoshimaru, M., and Nakanishi, S. (1987) Identification of a new type of mammahan myosin heavy chain by molecular cloning. J. Biol. Chem. 262: 14625–14632.

    Google Scholar 

  • Hynes, R. O. (1985) Molecular biology of fibronectin. Ann. Rev. Cell. Biol. 1: 67–90.

    Article  Google Scholar 

  • Isenburg, G., Rathke, P. C. Hulsmann N., Franke, W. W., and Wohlfarth-Bottermann, K. (1976) Cytoplasmic actomyosin fibrils in tissue culture cells. Direct proof of contractihty by visualisation of ATP-induced contraction in fibrils isolated by laser micro-beam dissection. Cell Tiss. Res. 166: 427–443.

    Google Scholar 

  • Izzard, C. S., and Lochner, L. R. (1980) Formation of cell-to-substrate contacts during fibroblast motility: an interference-reflexion study. J. Cell Sci. 42: 81–116.

    Google Scholar 

  • Kesbeke, F., Snaard-Jagalska, B. E., and Van Haastert, P. J. M. (1988) Signal transduction in Dictyostelium fgd A mutants with a defective interaction between surface cAMP receptors and a GTP binding regulatory protein. J. Cell Biol. 107: 521–528.

    Article  Google Scholar 

  • Knecht, D. A., and Loomis, W. F. (1987) Antisense RNA inactivation of myosin heavy chain gene expression in Dictyostelium discoideium. Science 236: 1081–1086.

    Article  Google Scholar 

  • Kohn, E. C., Liotta, L. A., and Schiffmann, E. (1990) Autocrine motility factor stimulates a three-fold increase in inositol trisphosphate in human melanoma cells. Biochem. Biophys. Res. Commn. 166: 757–764.

    Article  Google Scholar 

  • Kreis, T. E., and Birchmeier, W. (1980) Formation of cell to substrate contacts during fibroblast motihty. Cell 22: 555–561.

    Article  Google Scholar 

  • Lazarides, E., and Burridge, K. (1975) a-actinin: immunofluorescent locahsation of a muscle structural protein in nonmuscle cells. Cell 6: 289–298.

    Article  Google Scholar 

  • Lis, H., and Sharon, N. (1986) Lectins as molecules and tools. Ann. Rev. Biochem. 55: 35–67.

    Article  Google Scholar 

  • Liu, G., and Newell, P. C. (1988) Evidence that cyclic AMP regulates myosin interaction with the cytoskeleton during Chemotaxis of Dictyostelium. J. Cell Sci. 90: 123–129.

    Google Scholar 

  • Matsumura, F., Lin, J. J., Yamashiro-Matsumura, S., Thomas, G. P., and Topp, W. C. (1983) Differential expression of tropomyosin in the microfilaments isolated from normal and transformed rat cultured cells. J. Biol. Chem. 258: 13954–13964.

    Google Scholar 

  • Mellström, K., Hoglund, A. S., Nister, M., Heldin, C. H., Westermark, B., and Lindberg, U. (1985) The effect of platelet derived growth factor on morphology and motihty of human ghal cells. J. Mus. Res. Cell Motil. 4: 589–609.

    Article  Google Scholar 

  • Middleton, C. A. (1982) Cell contacts and the locomotion of epithehal cells, in: Cell Behaviour, eds R. Bellairs, A. Curtis and G. Dunn. C.U.P. Cambridge, U.K., pp. 159–182.

    Google Scholar 

  • Prescott, A. R., Vestberg, M., and Warn, R. M. (1989) Microtubules rich in modified alpha-tubulin characterise the tail processes of motile fibroblasts. J. Cell Sci. 94: 227–236.

    Google Scholar 

  • Rinnerthaler, G., Geiger, B., and Small, J. V. (1988) Contact formation during fibroblast locomotion: involvement of membrane ruffles and microtubules. J. Cell Biol. 106: 747–760.

    Article  Google Scholar 

  • Rosen, E. M., and Goldberg, I. D. (1989) Protein factors which regulate cell motility. In Vitro Cell. Dev. Biol. 25: 1079–1087.

    Article  Google Scholar 

  • Rosen, E. M. Meromsky, L., Goldberg, I., Bhargava, M., and Setter, E. (1990) Studies on the mechanism of scatter factor. Effects of agents that modulate intracellular signal transduction, macromolecular synthesis and cytoskeleton assembly. J. Cell Sci. 96: 639–649.

    Google Scholar 

  • Ruoslahti, E. (1988) Fibronectin and its receptors. Ann. Rev. Biochem. 57: 375–413.

    Article  Google Scholar 

  • Sanger, J. W., Sanger, J. M., and Jockusch, B. M. (1983) Differences in the stress fibres between fibroblasts and epithehal cells. J. Cell Biol. 96: 961–969.

    Article  Google Scholar 

  • Sanger, J. M., Mittal, B., Pochapin, M., and Sanger, J. (1986) Observations of microfilament bundles in living cells micro-injected with fluorescently labelled contractile proteins. J. Cell Sci. Suppl. 5: 17–44.

    Google Scholar 

  • Schliwa, M., Nakamura, T., Porter, K., and Euteneur, U. (1984) A tumor promoter induces rapid and coordinated reorganisation of actin and vincuhn in cultured cefls. J. Cell Biol. 99: 1045–1059.

    Article  Google Scholar 

  • Schmid, E., Schiller, D. L., Grund, C., Stadler, J., and Franke, W. W. (1983) Tissue type specific expression of intermediate filament proteins in a cultured epithelial line from bovine mammary gland. J. Cell Biol. 96: 37–50.

    Article  Google Scholar 

  • Small, J. V. (1988) The actin cytoskeleton. Electron Microsc. Rev. 1: 155–174.

    Article  Google Scholar 

  • Smith, C. D., Cox, C. C., and Snyderman, R. (1986) Receptor-coupled activation of phosphoinositide specific phospholipase C by an N protein. Science 232: 97–100.

    Google Scholar 

  • Steinman, R. M., Mellman, I. S., Muller, W. A., and Cohn, Z. (1983) Endocytosis and recycling of plasma membrane. J. Cell Biol. 96: 1–27.

    Article  Google Scholar 

  • Stevenson, B. R., Siliciano, J. D., Mooseker, M. S., and Goodenough, D. A. (1986) Identification of ZO-1: A high molecular weight polypetide associated with the tight junction (zonula occludens) in a variety of epithelia. J. Cell Biol. 103: 755–766.

    Article  Google Scholar 

  • Stoker, M., and Gherardi, E. (1986) Factors affecting epithehal interactions. In: Junctional complexes of epithelial cells. Ciba Foundation Symposium 125. Wiley, Chichester, pp. 127–239.

    Google Scholar 

  • Stracke, M. L., Guirguis, R., Liotta, L. A., and Schiffmann, E. (1987) Pertussis toxin inhibits stimulated motility independently of the adenylate cyclase pathway in human melanoma cells. Biochem. Biophys. Res. Commn. 146: 335;345.

    Google Scholar 

  • Traub, P. (1985) Intermediate filaments. Springer-Verlag. New York pp. 1–256.

    Book  Google Scholar 

  • VallĂ©s, A. M., Boyer, B., Badet, J., Tucker, G. C., Barritault, D., and Thiery, J. P. (1990) Acidic fibroblast growth factor is a modulator of epithelial plasticity in a rat bladder carcinoma cell line. Proc. Natl. Acad. Sci. USA 87: 1124–1128.

    Article  Google Scholar 

  • Vasiliev, J. M. (1985) Spreading of non-transformed and transformed cells. Biochim. Biophys. Acta 780: 21–65.

    Google Scholar 

  • Wang, Y. L. (1985) Exchange of actin subunits at the leading edge of living fibroblasts: Possible role of treadmilling. J. Cell Biol 101: 597–602.

    Article  Google Scholar 

  • Wehland, J., Osbom, M., and Weber, K. (1979) Cell-to-substratum contacts in living cells: a direct correlation between interference-reflexion and indirect-inmiunofluorescence microscopy using antibodies against actin and a-actinin. J. Cell Sci. 37: 257–273.

    Google Scholar 

  • Weidner, K. M., Behrens, J., Vandekerckhove, J., and Birchmeier, W. (1990) Scatter factor: Molecular characteristics and effect on the invasiveness of epithehal cells. J. Cell Biol. 111: 2097–2108.

    Article  Google Scholar 

  • Willingham, M. C., Yamada, K. M., Yamada, S. S., Pouyssegur, J., and Pastan I. (1977) Microfilament bundles and cell shape are related to adhesiveness to substratum and are dissociable from growth control in cultured fibroblasts. Cell 10: 375–380.

    Article  Google Scholar 

  • Zuk, A., Matlin, K. S., and Hay, E. D. (1989) Type I collagen gel induces Madin-Darby canine kidney cells to become fusiform in shape and lose apical-basal polarity. J. Cell Biol. 108: 903–919.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Dowrick, P.G., Warn, R.M. (1991). The cellular response to factors which induce motility in mammalian cells. In: Goldberg, I.D. (eds) Cell Motility Factors. Experientia Supplementum, vol 59. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7494-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7494-6_7

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7496-0

  • Online ISBN: 978-3-0348-7494-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics