Advertisement

The cellular response to factors which induce motility in mammalian cells

  • P. G. Dowrick
  • R. M. Warn
Chapter
Part of the Experientia Supplementum book series (EXS, volume 59)

Abstract

This contribution is to discuss what effects occur to the ultrastructure of vertebrate cells, and in particular the cytoskeleton, when it responds to a factor which induces or enhances cell motility. Amongst biological agents which have this role are a number of growth and motility factors, and a variety of agents which stimulate leukocyte Chemotaxis, including formyl peptides (for a review see Rosen and Goldberg, 1989).

Keywords

Stress Fibre MDCK Cell Motile Cell Focal Contact Mock Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abercrombie, M. (1980) The crawling movement of metazoan cells. Proc. R. Soc. Lond. (B) 207: 129–147.CrossRefGoogle Scholar
  2. Albrecht-Buehler, G. (1986) Autonomous movements of cytoplasmic fragments. Proc. Natl. Acad. Sci. USA 77: 6639–6643.CrossRefGoogle Scholar
  3. Anderson, J. M., Stevenson, B. R., Jesaitis, L. A., Goodenough, D. A., and Mooseker, M. S. (1988) Characterisation of ZO-1, a protein component of the tight junction from mouse liver and Madin-Darby canine kidney cells. J. Cell Biol 106: 1141–1149.CrossRefGoogle Scholar
  4. Bade, E. G., and Nitzgen, B. (1985) Extracellular matrix (ECM) modulates the EGF-induced migration of liver epithelial cells in serum-free, hormone-supplemented medium. In Vitro Cell. Dev. Biol. 21: 245–248.CrossRefGoogle Scholar
  5. Bade, E. G., and Feindler, S. (1988) Liver epithelial cell migration induced by epidermal growth factor or transforming growth factor alpha is associated with changes in the gene expression of secreted proteins. In Vitro Cell. Dev. Biol. 24: 149–154.CrossRefGoogle Scholar
  6. Badley, R. A., Couchman, J. R., and Rees, D. A. (1980) Comparison of the cell cytoskeleton in migratory and stationary chick fibroblasts. J. Mus. Res. Cell Motil. 1: 5–14.CrossRefGoogle Scholar
  7. Behrens, J., Birchmeier, W., Goodman, S. L., and Imhof, B. A. (1985) Dissociation of Madin-Darby canine kidney epithelial cells by the monoclonal antibody anti-Arc-1: Mechanistic aspects and identification of the antigen as a component related to uvomorulin. J. Cell Biol. 101: 1307–1315.CrossRefGoogle Scholar
  8. Ben-Ze’ev, A. (1986) The relationship between cytoplasmic organisation, gene expression and morphogenesis. TIBS 11: 478–481.Google Scholar
  9. Bernstein, B. W., and Bamburg, J. R. (1982) Tropomyosin binding to F-actin protects the F-actin from disassembly by brain depolymerising factor (ADF). Cell Motil. 2: 1–8.Google Scholar
  10. Bershadsky, A. D., Ivanova, O. Y., Lyass, L. A., Pletyushkina, O. Y., Vasiliev, J. M., and Gelfand, I. M. (1990) Cytoskeletal reorganisations responsible for the phorbol ester induced formation of cytoplasmic processes: possible involvement of intermediate filaments. Proc. Natl. Acad. Sci. USA 87: 1884–1888.CrossRefGoogle Scholar
  11. Bock, G., and Clark, S. eds. (1987) Junctional complexes of epithelial cells. Ciba Foundation Symposium 125. Wiley, Chichester, pp. 168–186.Google Scholar
  12. Beyer, B., Tucker, G. C., Valles, A. M., Franke, W. W., and Thiery, J. P. (1989) Rearrangements of desmosomal and cytoskeletal proteins during the transition from epitheUal to fibroblastoid organization in cultured rat bladder carcinoma cells. J. Cell Biol. 109: 1495–1509.CrossRefGoogle Scholar
  13. Bretscher, M. S. (1984) Endocytosis: relation to capping and cell locomotion. Science 224: 681–686.CrossRefGoogle Scholar
  14. Brunk, U., Schellens, J., and Westermark, B. (1976) Influence of epidermal growth factor (EGF) on ruffling activity, pinocytosis and proliferation of cultivated human glial cells. Exp. Cell Res. 103: 295–302.CrossRefGoogle Scholar
  15. Byers, H. R., and Fujiwara, K. (1982) Stress fibres in cells in situ: immunofluorescence visualization with anti-actin, anti-myosin and anti-alpha actinin. J. Cell Biol. 93: 804–811.CrossRefGoogle Scholar
  16. Burridge, K., Fath, K., Kelly, T., Nuckolls, G., and Turner C. (1988) Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Ann. Rev. Cell Biol. 4: 487–525.CrossRefGoogle Scholar
  17. Burridge, K., and Connell, L. (1983) Talin: a cytoskeletal component concentrated in adhesion plaques and other sites of actin-membrane interaction. Cell Motil. Cytoskel. 3: 405–417.CrossRefGoogle Scholar
  18. Carter, S. B. (1967) Effects of cytochalasins on mammalian cells. Nature 213: 261–264.CrossRefGoogle Scholar
  19. Chinkers, M., McKanna, J. A., and Cohen, S. (1979) Rapid induction of morphological changes in human carcinoma cells A-431 by epidermal growth factor. J. Cell Biol. 83: 260–265.CrossRefGoogle Scholar
  20. Conzelman, K. A., and Mooseker, M. S. (1987) The 110-kD protein calmodulin complex of the intestinal microvillus is an actin activated Mg-ATPase. J. Cell Biol. 105: 313–324.CrossRefGoogle Scholar
  21. Cooper, H. L., Feurerstein, N., Makoto, N., and Bassin, R. (1985) Suppression of tropomyosin synthesis, a common biochemical feature of oncogenesis by structurally diverse retroviral oncogenes. Mol. Cell Biol. 5: 972–983.Google Scholar
  22. Couchman, J. R., and Rees, D. A. (1979) The behaviour of fibroblasts migrating from chick heart explants: changes in adhesion, locomotion and growth, and in the distribution of actomyosin and fibronectin. J. Cell Sci. 39: 149–165.Google Scholar
  23. Davies, P. F., and Ross, R. (1980) Growth mediated, density dependent inhibition of endocytosis in cultured arterial smooth muscle cells. Exp. Cell Res. 129: 329–338.CrossRefGoogle Scholar
  24. DeLozanne, A., and Spudlich, J. A. (1987) Disruption of the Dictyostelium myosin heavy chain gene by homologous recombination. Science 236: 1086–1091.CrossRefGoogle Scholar
  25. Domnina, L. V., Gelfand, V. I., Ivanova, O. Y., Leonova, E. V., Pletjushikina, O. Y., Vasiliev, J. M., and Gelfand, I. M. (1982) Effects of small doses of cytochalasins on fibroblasts: Preferential changes of active edges and focal contacts. Proc. Natl. Acad. Sci. USA 79: 7754–7757.CrossRefGoogle Scholar
  26. Dowrick, P., and Warn, R. M. (1991) The effects of scatter factor on the cytoskeletal organisation of epithelial cells. Cancer Invest., 8: 675–683.CrossRefGoogle Scholar
  27. Dowrick, P., Prescott, A. R., and Warn, R. M. (1991) Scatter factor effects major changes in the cytoskeletal organisation of epithelial cells. Cytokine. In press.Google Scholar
  28. Dugina, V. B., Svitkina, T. M., Vasiliev, J. M., and Gelfand, I. M. (1985) Special type of morphological reorganisation induced by phorbol ester: Reversible partition of cell into motile and stable domains. Proc. Natl. Acad. Sci. USA 84: 4122–4125.CrossRefGoogle Scholar
  29. Euteneuer, U., and Schliwa, M. (1984) Persistent directional motility of cells and cytoplasmic fragments in the absence of microtubules. Nature 310: 58–61.CrossRefGoogle Scholar
  30. Farquahar, M. G., and Palade, G. E. (1963) Junctional complexes in various epithelia. J. Cell Biol. 45: 272–290.Google Scholar
  31. Fattoum, A., Hartwig, J. H., and Stossel, T. P. (1983) Isolation and some structural and functional properties of macrophage tropomyosin. Biochemistry 22: 1187–1193.CrossRefGoogle Scholar
  32. Fukui, Y., Lynch, T. J., Brzeska, H., and Kom, E. D. (1989) Myosin I is located at the leading edges of locomoting Dictyostelium amoebae. Nature 341: 326–331.CrossRefGoogle Scholar
  33. Geiger, B. (1979) A 130k protein from chick gizzard. Its localisation at the termini of microfilament bundles in cultured chicken cells. Cell 18: 193–205.CrossRefGoogle Scholar
  34. Geuze, H. J., Slot, J. W., Strous, J. A. M., Lodish, H. F., and Schwartz, A. L. (1983) Intracellular site of asialoglycoprotein receptor-ligand uncoupling: Double-label immunoelectron microscopy during receptor mediated endocytosis. Cell 32: 277–287.CrossRefGoogle Scholar
  35. Goldstein, J. L., Brown, M. S., Anderson, R. G. W., Russel, D. W., and Schneider, W. J. (1985) Receptor-mediated endocytosis. Ann. Rev. Cell. Biol. 1: 1–39.CrossRefGoogle Scholar
  36. Guirguis, R., Margulies, L, Taraboletti, G., Schiffmann, E., and Liotta, E. (1987) Cytokineinduced pseudopodial protrusion is coupled to tumour cell invasion. Nature 329: 261–263.CrossRefGoogle Scholar
  37. Gumbiner, B. (1987) Structure, biochemistry, and assembly of epithelial tight junctions. Am. J. Physiol. 253: C749-C758.Google Scholar
  38. Gumbiner, B., and Simons, K. (1986) The role of uvomorulin in the formation of epithelial occluding junctions, in: Junctional complexes of epithelial cells. Ciba Foundation Symposium 125. Wiley, Chichester, pp. 168–186.Google Scholar
  39. Gundersen, G. G., Kalnoski, M. H., and Bulinski, J. C. (1984) Distinct populations of microtubules: Tyrosinated and non-tyrosinated a-tubulin are distributed differentially in vivo. Cell 38: 779–789.CrossRefGoogle Scholar
  40. Gundersen, G. G., Khawaja, S., and Bulinski, J. C. (1987) Post-polymerisation detyrosination of a-tubulin: a mechanism for subcellular differentiation of microtubules. J. Cell Biol. 105: 251–264.CrossRefGoogle Scholar
  41. Haigler, H. T., McKanna, J. A., and Cohen, S. (1979a) Rapid stimulation of pinocytosis in human carcinoma cells A-431 by epidermal growth factor. J. Cell Biol. 83: 82–90.CrossRefGoogle Scholar
  42. Haigler, H. T., McKanna, J. A., and Cohen, S. (1979b) Direct visualisation of the binding and internalisation of epidermal growth factor in human carcinoma cells A-431. J. Cell Biol. 81: 382–395.CrossRefGoogle Scholar
  43. Heath, J. P., and Dunn, G. (1978) Cell to substratum contacts of chick fibroblasts and their relationship to the microfilament system. A correlated interference-reflexion and high voltage electron-microscopy study. J. Cell Sci. 29: 197–212.Google Scholar
  44. Hegmann, T. E., Lin, J. L., and Lin, J. J. (1988) Motility dependence of the heterogeneous staining of cultured cells by a monoclonal anti-tropomyosin antibody. J. Cell Biol. 106: 385–393.CrossRefGoogle Scholar
  45. Hendricks, M., and Weintraub, H. (1984) Multiple tropomyosin polypeptides in chicken embryo fibroblasts: differential repression of transcription by Rous sarcoma virus transformation. Mol. Cell Biol. 4: 1823–1833.Google Scholar
  46. Herman, I., Crisona, N. J., and Pollard, T. D. (1981) Relation between cell activity and the distribution of cytoplasmic actin and myosin. J. Cell Biol. 90: 84–91.CrossRefGoogle Scholar
  47. Höner, B., Citi, S., Kendrick-Jones, J., and Jockusch, B. (1988) Modulation of cellular morphology and locomotory activity by antibodies against myosin. J. Cell Biol. 107: 2181–2189.CrossRefGoogle Scholar
  48. Hoshimaru, M., and Nakanishi, S. (1987) Identification of a new type of mammahan myosin heavy chain by molecular cloning. J. Biol. Chem. 262: 14625–14632.Google Scholar
  49. Hynes, R. O. (1985) Molecular biology of fibronectin. Ann. Rev. Cell. Biol. 1: 67–90.CrossRefGoogle Scholar
  50. Isenburg, G., Rathke, P. C. Hulsmann N., Franke, W. W., and Wohlfarth-Bottermann, K. (1976) Cytoplasmic actomyosin fibrils in tissue culture cells. Direct proof of contractihty by visualisation of ATP-induced contraction in fibrils isolated by laser micro-beam dissection. Cell Tiss. Res. 166: 427–443.Google Scholar
  51. Izzard, C. S., and Lochner, L. R. (1980) Formation of cell-to-substrate contacts during fibroblast motility: an interference-reflexion study. J. Cell Sci. 42: 81–116.Google Scholar
  52. Kesbeke, F., Snaard-Jagalska, B. E., and Van Haastert, P. J. M. (1988) Signal transduction in Dictyostelium fgd A mutants with a defective interaction between surface cAMP receptors and a GTP binding regulatory protein. J. Cell Biol. 107: 521–528.CrossRefGoogle Scholar
  53. Knecht, D. A., and Loomis, W. F. (1987) Antisense RNA inactivation of myosin heavy chain gene expression in Dictyostelium discoideium. Science 236: 1081–1086.CrossRefGoogle Scholar
  54. Kohn, E. C., Liotta, L. A., and Schiffmann, E. (1990) Autocrine motility factor stimulates a three-fold increase in inositol trisphosphate in human melanoma cells. Biochem. Biophys. Res. Commn. 166: 757–764.CrossRefGoogle Scholar
  55. Kreis, T. E., and Birchmeier, W. (1980) Formation of cell to substrate contacts during fibroblast motihty. Cell 22: 555–561.CrossRefGoogle Scholar
  56. Lazarides, E., and Burridge, K. (1975) a-actinin: immunofluorescent locahsation of a muscle structural protein in nonmuscle cells. Cell 6: 289–298.CrossRefGoogle Scholar
  57. Lis, H., and Sharon, N. (1986) Lectins as molecules and tools. Ann. Rev. Biochem. 55: 35–67.CrossRefGoogle Scholar
  58. Liu, G., and Newell, P. C. (1988) Evidence that cyclic AMP regulates myosin interaction with the cytoskeleton during Chemotaxis of Dictyostelium. J. Cell Sci. 90: 123–129.Google Scholar
  59. Matsumura, F., Lin, J. J., Yamashiro-Matsumura, S., Thomas, G. P., and Topp, W. C. (1983) Differential expression of tropomyosin in the microfilaments isolated from normal and transformed rat cultured cells. J. Biol. Chem. 258: 13954–13964.Google Scholar
  60. Mellström, K., Hoglund, A. S., Nister, M., Heldin, C. H., Westermark, B., and Lindberg, U. (1985) The effect of platelet derived growth factor on morphology and motihty of human ghal cells. J. Mus. Res. Cell Motil. 4: 589–609.CrossRefGoogle Scholar
  61. Middleton, C. A. (1982) Cell contacts and the locomotion of epithehal cells, in: Cell Behaviour, eds R. Bellairs, A. Curtis and G. Dunn. C.U.P. Cambridge, U.K., pp. 159–182.Google Scholar
  62. Prescott, A. R., Vestberg, M., and Warn, R. M. (1989) Microtubules rich in modified alpha-tubulin characterise the tail processes of motile fibroblasts. J. Cell Sci. 94: 227–236.Google Scholar
  63. Rinnerthaler, G., Geiger, B., and Small, J. V. (1988) Contact formation during fibroblast locomotion: involvement of membrane ruffles and microtubules. J. Cell Biol. 106: 747–760.CrossRefGoogle Scholar
  64. Rosen, E. M., and Goldberg, I. D. (1989) Protein factors which regulate cell motility. In Vitro Cell. Dev. Biol. 25: 1079–1087.CrossRefGoogle Scholar
  65. Rosen, E. M. Meromsky, L., Goldberg, I., Bhargava, M., and Setter, E. (1990) Studies on the mechanism of scatter factor. Effects of agents that modulate intracellular signal transduction, macromolecular synthesis and cytoskeleton assembly. J. Cell Sci. 96: 639–649.Google Scholar
  66. Ruoslahti, E. (1988) Fibronectin and its receptors. Ann. Rev. Biochem. 57: 375–413.CrossRefGoogle Scholar
  67. Sanger, J. W., Sanger, J. M., and Jockusch, B. M. (1983) Differences in the stress fibres between fibroblasts and epithehal cells. J. Cell Biol. 96: 961–969.CrossRefGoogle Scholar
  68. Sanger, J. M., Mittal, B., Pochapin, M., and Sanger, J. (1986) Observations of microfilament bundles in living cells micro-injected with fluorescently labelled contractile proteins. J. Cell Sci. Suppl. 5: 17–44.Google Scholar
  69. Schliwa, M., Nakamura, T., Porter, K., and Euteneur, U. (1984) A tumor promoter induces rapid and coordinated reorganisation of actin and vincuhn in cultured cefls. J. Cell Biol. 99: 1045–1059.CrossRefGoogle Scholar
  70. Schmid, E., Schiller, D. L., Grund, C., Stadler, J., and Franke, W. W. (1983) Tissue type specific expression of intermediate filament proteins in a cultured epithelial line from bovine mammary gland. J. Cell Biol. 96: 37–50.CrossRefGoogle Scholar
  71. Small, J. V. (1988) The actin cytoskeleton. Electron Microsc. Rev. 1: 155–174.CrossRefGoogle Scholar
  72. Smith, C. D., Cox, C. C., and Snyderman, R. (1986) Receptor-coupled activation of phosphoinositide specific phospholipase C by an N protein. Science 232: 97–100.Google Scholar
  73. Steinman, R. M., Mellman, I. S., Muller, W. A., and Cohn, Z. (1983) Endocytosis and recycling of plasma membrane. J. Cell Biol. 96: 1–27.CrossRefGoogle Scholar
  74. Stevenson, B. R., Siliciano, J. D., Mooseker, M. S., and Goodenough, D. A. (1986) Identification of ZO-1: A high molecular weight polypetide associated with the tight junction (zonula occludens) in a variety of epithelia. J. Cell Biol. 103: 755–766.CrossRefGoogle Scholar
  75. Stoker, M., and Gherardi, E. (1986) Factors affecting epithehal interactions. In: Junctional complexes of epithelial cells. Ciba Foundation Symposium 125. Wiley, Chichester, pp. 127–239.Google Scholar
  76. Stracke, M. L., Guirguis, R., Liotta, L. A., and Schiffmann, E. (1987) Pertussis toxin inhibits stimulated motility independently of the adenylate cyclase pathway in human melanoma cells. Biochem. Biophys. Res. Commn. 146: 335;345.Google Scholar
  77. Traub, P. (1985) Intermediate filaments. Springer-Verlag. New York pp. 1–256.CrossRefGoogle Scholar
  78. Vallés, A. M., Boyer, B., Badet, J., Tucker, G. C., Barritault, D., and Thiery, J. P. (1990) Acidic fibroblast growth factor is a modulator of epithelial plasticity in a rat bladder carcinoma cell line. Proc. Natl. Acad. Sci. USA 87: 1124–1128.CrossRefGoogle Scholar
  79. Vasiliev, J. M. (1985) Spreading of non-transformed and transformed cells. Biochim. Biophys. Acta 780: 21–65.Google Scholar
  80. Wang, Y. L. (1985) Exchange of actin subunits at the leading edge of living fibroblasts: Possible role of treadmilling. J. Cell Biol 101: 597–602.CrossRefGoogle Scholar
  81. Wehland, J., Osbom, M., and Weber, K. (1979) Cell-to-substratum contacts in living cells: a direct correlation between interference-reflexion and indirect-inmiunofluorescence microscopy using antibodies against actin and a-actinin. J. Cell Sci. 37: 257–273.Google Scholar
  82. Weidner, K. M., Behrens, J., Vandekerckhove, J., and Birchmeier, W. (1990) Scatter factor: Molecular characteristics and effect on the invasiveness of epithehal cells. J. Cell Biol. 111: 2097–2108.CrossRefGoogle Scholar
  83. Willingham, M. C., Yamada, K. M., Yamada, S. S., Pouyssegur, J., and Pastan I. (1977) Microfilament bundles and cell shape are related to adhesiveness to substratum and are dissociable from growth control in cultured fibroblasts. Cell 10: 375–380.CrossRefGoogle Scholar
  84. Zuk, A., Matlin, K. S., and Hay, E. D. (1989) Type I collagen gel induces Madin-Darby canine kidney cells to become fusiform in shape and lose apical-basal polarity. J. Cell Biol. 108: 903–919.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 1991

Authors and Affiliations

  • P. G. Dowrick
    • 1
  • R. M. Warn
    • 1
  1. 1.School of Biological SciencesUniversity of East AngliaNorwichGreat Britain

Personalised recommendations