Advertisement

Scatter factor stimulates migration of vascular endothelium and capillary-like tube formation

  • Eliot M. Rosen
  • Derek Grant
  • Hynta Kleinman
  • Susan Jaken
  • Maribeth A. Donovan
  • Eva Setter
  • Peter M. Luckett
  • William Carley
  • Madhu Bhargava
  • Itzhak D. Goldberg
Chapter
Part of the Experientia Supplementum book series (EXS, volume 59)

Summary

Scatter factors (SFs) are heat- and trypsin-sensitive cytokines secreted by fibroblastic and vascular smooth muscle cell lines which stimulate motility of normal epithelium, carcinoma cells, and vascular endothelium. Human and mouse SFs have been purified and identified as 90 kD heterodimeric proteins consisting of heavy (58 kD) and light (31 kD) disulfide-bonded subunits. Partial amino acid sequence data from SF-derived tryptic peptides indicate marked sequence homology with hepatocyte growth factors, suggesting a common multigene family. In this chapter we describe the regulation by SF of vascular endothelial cell Chemotaxis and chemokinesis; migration from microcarrier beads to flat surfaces; invasion through porous filters coated with reconstituted basement membrane; secretion of plasminogen activator; and in vitro capillary-like tube formation on a basement membrane surface.

Keywords

Scatter Factor Bovine Aortic Endothelial Cell Microcarrier Bead Human Hepatocyte Growth Factor Endothelial Migration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albini, A., Iwamoto, Y., Kleinman, H. K., Martin, G. R., Aaronson, S. A., Kozlowski, J. M., and McEwan, R. N. (1989) A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res. 47: 3239–3245.Google Scholar
  2. Folkman, J. (1985) Tumor angiogenesis. Adv. Cancer Res. 43: 175–203.CrossRefGoogle Scholar
  3. Gavrilovic, J., Reynolds, J. J., and Murphy, G. (1985) Inhibition of type I collagen film degradation by tumor cells using a specific antibody to collagenase and the specific tissue inhibitor of metalloproteinases (TIMP). J. Cell Int. Rep. 9: 1097–1107.CrossRefGoogle Scholar
  4. Gherardi, E., Gray, J., Stoker, M., Perryman, M., and Furlong, R. (1989) Purification of a scatter factor, a fibroblast-derived basic protein which modulates epithelial interactions and movement. PNAS USA 86: 5844–5848.CrossRefGoogle Scholar
  5. Gherardi, E., and Stoker, M. (1990) Hepatocytes and scatter factor. Nature 346: 228 (Correspondence).Google Scholar
  6. Gohda, E., Tsubouchi, H., Nakagama, H., Hirono, S., Sakiyama, O., Takahashi, K., Miyazaka, H., Hashimoto, S., and Daikuhara, Y. (1988) Purification and partial characterization of hepatocyte growth factor from plasma of a patient with fulminant hepatic failure. J. Clin. Invest. 81: 414–419.CrossRefGoogle Scholar
  7. Grant, D. S., Tashiro, K.-I., Segui-Real, B., Yamada, Y., Martin, G. R., and Kleinman, H. K. (1989) Two different laminin domains mediate the differentiation of human endothelial cells into capillary-like structures in vitro. Cell 58: 933–943.CrossRefGoogle Scholar
  8. Kubota, Y., Kleinman, H. K., Martin, G. R., and Lawley, T. J. (1988) Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary like structures. J. Cell Biol. 107: 1589–1598.CrossRefGoogle Scholar
  9. Leibovich, S. J., Polverini, P. J., Shepard, H. M., Wiseman, D. M., Shively, V., and Nuseir, N. (1987) Macrophage-induced angiogenesis is mediated by tumor necrosis factor-a. Nature 329: 630–632.CrossRefGoogle Scholar
  10. Miyazawa, K., Tsubouchi, H., Naka, D., Takahashi, K., Okigaki, M., Arakaki, N., Nakayama, H., Hirono, S., Sakiyama, O., Takahashi, K., Gohda, E., Daikuhara, Y., and Kitamura, N. (1989) Molecular cloning and sequence analysis of cDNA for human hepatocyte growth factor. Biochem. Biophys. Res. Comm. 163: 967–973.CrossRefGoogle Scholar
  11. Nakamura, T., Nawa, K., Ichihara, A., Kasire, A., and Nishino, T. (1987) Subunit structure of hepatocyte growth factor from rat platelets. FEBS Lett. 224: 331–338.CrossRefGoogle Scholar
  12. Nakamura, T., Nishizawa, T., Hagiay, M., Seki, T., Shimonishi, M., Sugimura, A., Tashior, K., and Shimuzu, S. (1989) Molecular cloning and expression of human hepatocyte growth factor. Nature 342: 440–443.CrossRefGoogle Scholar
  13. Ranby, M., Norrman, B., and Wallen, P. (1982) A sensitive assay for tissue plasminogen activator. Thrombosis Res. 27: 743–749.CrossRefGoogle Scholar
  14. Rosen, E. M., Mueller, S. N., Noveral, J., and Levine, E. M. (1981) Proliferative characteristics of clonal endothelial cell strains. J. Cell Physiol. 107: 123–137.CrossRefGoogle Scholar
  15. Rosen, E. M., Goldberg, I. D., Kacinski, B. M., Buckholz, T., and Vinter, D. W. (1989) Smooth muscle releases an epithelial cell scatter factor which binds to heparin. In Vitro Cell. Dev. Biol. 25: 163–173.CrossRefGoogle Scholar
  16. Rosen, E. M., Meromsky, L., Setter, E., Vinter, D. W., and Goldberg, I. D. (1990a) Smooth muscle-derived factor stimulates mobihty of human tumor cells. Invasion Metastasis 10: 49–64.Google Scholar
  17. Rosen, E. M., Meromsky, L., Setter, E., Vinter, D. W., and Goldberg, I. D. (1990b) Quantitation of cytokine-stimulated migration of endothelium and epithehum by a new assay using microcarrier beads. Exp. Cell Res. 186: 22–31.CrossRefGoogle Scholar
  18. Rosen, E. M., Meromsky, L., Romero, R., Setter, E., and Goldberg, I. D. (1990c) Human placenta contains an epithehal scatter protein. Biochem. Biophys. Res. Comm. 168: 1082–1088.CrossRefGoogle Scholar
  19. Rosen, E. M., Meromsky, L., Setter, E., Vinter, D. W., and Goldberg, I. D. (1990d) Purification and migration-stimulating activities of scatter factor. Proc. Soc. Exp. Biol. Med. 195: 34–43.Google Scholar
  20. Rosen, E. M., Meromsky, L., Goldberg, I. D., Bhargava, M., and Setter, E. (1990e) Studies on the mechanism of scatter factor. Effects of agents which modulate intracellular signal transduction, macromolecule synthesis, and cytoskeleton assembly. J. Cell Sci. 96: 639–649.Google Scholar
  21. Rosen, E. M., Jaken, S., Carley, W., Setter, E., Bhargava, M., and Goldberg, I. D. (1991) Regulation of motility in bovine brain endothehal cells. J. Cell Physiol., 146: 325–335.CrossRefGoogle Scholar
  22. Rosen, E. M., Carley, W., and Goldberg, I. D. (1990f) Scatter factor regulates vascular endothelial cell motility. Cancer Invest., 8: 647–650.CrossRefGoogle Scholar
  23. Saksela, O., and Rifkin, D. B. (1988) Cell-associated plasminogen activation: Regulation and physiological functions. Ann. Rev. Cell Biol. 4: 93–126.CrossRefGoogle Scholar
  24. Stoker, M., and Perryman, M. (1985) An epithelial scatter factor released by embryo fibroblasts. J. Cell Sci. 77: 209–223.Google Scholar
  25. Stoker, M., Gherardi, E., Perryman, M., and Gray, J. (1987) Scatter factor is a fibroblast- derived modulator of epithehal cell mobility. Nature 327: 239–242.CrossRefGoogle Scholar
  26. Stoker, M. (1989) Effect of scatter factor on motility of epithehal cells and fibroblasts. J. Cell Physiol. 139: 565–569.CrossRefGoogle Scholar
  27. Tashiro, K., Hagiya, M., Nishizawa, T., Seki, T., Shimonishi, M., Shimizu, S., and Naka- mura, T. (1990) Deduced primary structure of rat hepatocyte growth factor and expression of the mRNA in rat tissues. PNAS USA 87: 3200–3204.CrossRefGoogle Scholar
  28. Thomas, K. A. (1987) Fibroblast growth factors. FASEB J. 1: 434–440.Google Scholar
  29. Weidner, K. M., Behrens, J., Vandekerckhove, J., and Birchmeier, W. (1990) Scatter factor: Molecular characteristics and effect on invasiveness of epithehal cells. J. Cell Biol. 111: 2097–2108.CrossRefGoogle Scholar
  30. Zamegar, R., and Michalopoulos, G. (1989) Purification and biological characterization of human hepatopoietin A; a polypeptide growth factor hepatocytes. Cancer Res. 49: 3314–3320.Google Scholar
  31. Zigmond, S. H., and Hirsch, J. G. (1973) Leukocyte locomotion and Chemotaxis. New methods for evaluation and demonstration of a cell-derived chemotactic factor. J. Exp. Med. 137: 387–410.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 1991

Authors and Affiliations

  • Eliot M. Rosen
    • 1
  • Derek Grant
    • 2
  • Hynta Kleinman
    • 2
  • Susan Jaken
    • 3
  • Maribeth A. Donovan
    • 1
  • Eva Setter
    • 1
  • Peter M. Luckett
    • 4
  • William Carley
    • 5
  • Madhu Bhargava
    • 6
  • Itzhak D. Goldberg
    • 6
  1. 1.Department of Therapeutic RadiologyYale University School of MedicineNew HavenUSA
  2. 2.Laboratory of Developmental Biology and AnomaliesNational Institutes of HealthBethesdaUSA
  3. 3.W. Alton Jones Cell Science CenterLake PlacidUSA
  4. 4.Department of PediatricsHarbor-UCLA Medical CenterTorranceUSA
  5. 5.Miles LaboratoriesWest HavenUSA
  6. 6.Department of Radiation OncologyLong Island Jewish Medical CenterNew Hyde ParkUSA

Personalised recommendations