Cell Motility Factors pp 63-75 | Cite as
Purification, characterization and mechanism of action of scatter factor from human placenta
- 4 Citations
- 49 Downloads
Summary
Scatter factor (SF) causes contiguous sheets of epithelium to spread and cells to separate from each other. SF also increases the velocity, area, and reduces the circularity of individual cells. These changes are mediated in part by alterations in protein synthesis, protein phosphorylation, cytoskeletal reorganization, and cell surface components. SF has been purified from the conditioned medium of ras transformed 3T3 cells and human placenta. Sequence information suggests that SF from 3T3 cells is closely related to hepatocyte growth factor. SF is a glycoprotein, but glycosylation is not necessary for its activity. Glycosylation of target cell proteins, however, is required for SF action.
Keywords
Conditioned Medium Hepatocyte Growth Factor Human Placenta Madin Darby Canine Kidney Scatter FactorPreview
Unable to display preview. Download preview PDF.
References
- Behrens, J., Weidner, K. M., Frixen, U. H., Schipper, J. H., Sachs, M., Arakaki, N., Daiknhara, Y., and Birchmeier, W. (1991) The role of E-cadherin and scatter factor in tumor invasion and cell motility, in: Cell Motility Factors, ed. I. D. Goldberg. Birkhäuser Verlag, Basel, pp. 109–126. (this volume)Google Scholar
- Bhargava, M., Joseph, A., Li, Y., Pang, S., Goldberg, I. D., Setter, E., Donovan, M., Zamegar, R., Nakamura, T., and Rosen, E. M. Scatter factor and hepatocyte growth factor: Comparison of biologic activities and immunologic reactivity. Submitted for publication.Google Scholar
- Boyer, B., and Thiery, J. P. (1989) Epithelial cell adhesion mechanisms. J. Membrane Biol. 112: 97–108.CrossRefGoogle Scholar
- Dowrick, P. G., and Warn, R. M. (1991a) The effects of scatter factor on the cytoskeletal organization of epithelial cells. Cancer Invest., in press.Google Scholar
- Dowrick, P. G., and Warn, R. M. (1991b) The cellular response to factors which induce motility in mammaHan cells, in: Cell Motility Factors, ed. I. D. Goldberg. Birkhäuser Verlag, Basel, pp. 53–62. (this volume).Google Scholar
- Gherardi, E., Gray, J., Stoker, M., Perryman, M., and Furlong, R. (1989) Purification of scatter factor, a fibroblast-derived basic protein that modulates epithelial interactions and movement. Proc. Natl. Acad. Sci. USA 86: 5844–5848.CrossRefGoogle Scholar
- Gherardi, E., and Coffer, A. (1991) Purification and characterization of scatter factor, in: Cell Motility Factors, ed. I. D. Goldberg. Birkhäuser Verlag, Basel, pp. 53–62. (this volume).Google Scholar
- Gherardi, E., and Stoker, M. (1990) Hepatocytes and scatter factor. Nature 346: 228.CrossRefGoogle Scholar
- Hofmann, R., Joesph, A., Bhargava, M. M., Rosen, E. M., and Goldberg, I. D. Scatter factor is a glycoprotein but glycosylation is not required for its activity. Submitted for publication.Google Scholar
- Ireland, G. W., Stern, C. D., and Stoker, M. (1987) Human MRC5 cells induce a secondary primitive streak when grafted into chick embryos. J. Anat. 152: 667–675.Google Scholar
- Joseph, A., Bhargava, M. M., and Goldenberg, I. D. Binding of scatter factor to cell surface proteins of target cells. Submitted for publication.Google Scholar
- Liotta, L. A., Mandler, R., Murano, G., Katz, D. A., Gordon, R. K., Chiang, P. K., and Schiffmann, E. (1986) Tumor cell autocrine motihty factor. Proc. Natl. Acad. Sci. USA 83: 3302–3306.CrossRefGoogle Scholar
- Marlow, D. E., and Goldrosen, M. H. (1988) Relationship of in vitro cell motility and colonization potential in a mouse colon adenocarcinoma (MCA-38) cell line. Invasion Metastasis 8: 133–142.Google Scholar
- Miyazawa, K., Tsubouchi, H., Naka, D., Takahashi, K., Okigaki, M., Arakaki, N., Nakayama, H., Hirono, S., Sakiyama, O., Takahashi, K., Gohda, E., Daikuhara, Y., and Kitamura, N. (1989) Molecular cloning and sequence analysis of cDNA for human hepatocyte growth factor. Biochem. Biophys. Res. Commun. 163: 967–973.CrossRefGoogle Scholar
- Nabi, I. R., Watanabe, H., Stilletti, S., and Raz, A. (1991) Tumor cell autocrine motilty factor receptor, in: Cell Motility Factors, ed. I. D. Goldberg. Birkhäuser Verlag, Basel, pp. 163–177. (this volume)Google Scholar
- Nakamura, T., Nishizawa, T., Hagiya, M., Seki, T., Shimonishi, M., Sugimura, A., Tashiro, K., and Shimizu, S. (1989) Molecular cloning and expression of human hepatocyte growth factor. Nature 342: 440–443.CrossRefGoogle Scholar
- Repesh, L. A. (1989) A new in vitro assay for quantitating tumor cell invasion. Invasion and Metastasis 9: 192–208.Google Scholar
- Rosen, E. M., and Goldberg, I. D. (1989a) Protein factors which regulate cell motility. Invited Review, In Vitro Cell. Dev. Biol. 25: 1079–1087.CrossRefGoogle Scholar
- Rosen, E. M., Goldberg, I. D. Kacinski, B. M., Buckholz, T., and Vinter, D. W. (1989b) Smooth muscle releases an epithelial cell scatter factor which binds to heparin. In Vitro Cell. Dev. Biol. 25: 163–173.CrossRefGoogle Scholar
- Rosen, E. M., Meromsky, L., Setter, E., Vinter, D. W., and Goldberg, I. D. (1990a) Purified scatter factor stimulates epithelial and vascular endothelial cell migration. Proc. Soc. Exp. Biol. Med. 195: 34–43.Google Scholar
- Rosen, E. M., Meromsky, L., Romero, R., Setter, E., and Goldberg, I. D. (1990b) Human placenta contains an epithelial scatter protein. Biochem. Biophys. Res. Commun. 168: 1082–1088.CrossRefGoogle Scholar
- Rosen, E. M., Meromsky, L., Goldberg, I. D., Bhargava, M., and Setter, E. (1990c) Studies on the mechanism of scatter factor. Effects of agents which modulate intracellular signal transduction, macromolecule synthesis, and cytoskeleton assembly. J. Cell. Sci. 96: 639–649.Google Scholar
- Rosen, E. M., Meromsky, L., Setter, E., Vinter, D. W., and Goldberg, I. D. (1990d) Smooth muscle-derived factor stimulates mobility of human tumor cells. Invasion and Metastasis 10: 49–64.Google Scholar
- Rosen, E. M., Grant, D., Kleinman, H., Jaken, S., Donovan, M., Setter, E., Luckett, P. M., and Carley, W. Bhargava, M., and Goldberg, I. D. (1991) Scatter factor stimulates migration of vascular endothelium and capillary-like tube formation, in: Cell Motility Factors, ed. I. D. Goldberg. Birkhäuser Verlag, Basel, pp. 76–88. (this volume)Google Scholar
- Rubin, J. S., Chan, A. M. L., Bottaro, D. P., Burgess, W. H., Taylor, W. G., Cech, A. C., Hirschfield, D. W., Wong, J., Miki, T., Finch, P. W., and Aaronson, S. T. (1991) A broad-spectrum human lung fibroblast-derived mitogen is a variant of hepatocyte growth factor. Proc. Natl. Acad. Sci. USA 88: 415–419.CrossRefGoogle Scholar
- Schor, S. L., Schor, A. M., Grey, A. M., Chen, J., Rushton, G., Grant, M. E., and Ellis, I. (1989) Mechanism of action of the migration stimulating factor produced by fetal and cancer patient fibroblasts: Effect on hyaluronic acid synthesis. In Vitro Cell. Dev. Biol. 25: 737–746.CrossRefGoogle Scholar
- Schor, S. L., Grey, A. M., Picardo, M., Schor, A. M., Howell, A., Ellis, I., and Rushton, G., Heterogeneity amongst fibroblasts in the production of migration stimulating factor (MSF): Implications for cancer pathogenesis, in: Cell Motility Factors, ed. I. D. Goldberg. Birkhäuser Verlag, Basel, pp. 127–146. (this volume)Google Scholar
- Sholley, M. M., Gimbrone, M. A., and Cotran, R. S. (1977) Cellular migration and replication in endothelial regeneration. A study using irradiated endothelial cultures. Lab. Invest. 36: 18–25.Google Scholar
- Stoker, M., and Gherardi, E. (1989) Scatter factor and other regulators of cell motility. Br. Med. Bull. 45: 481–491.Google Scholar
- Stoker, M., Gherardi, E., Perryman, M., and Gray, J. (1987) Scatter factor is a fibroblast derived modulator of epithelial cell mobility. Nature 327: 239–242.CrossRefGoogle Scholar
- Stoker, M., and Perryman, M. (1985) An epithelial scatter factor released by embryo fibroblasts. J. Cell Sci. 77: 209–223.Google Scholar
- Stracke, M. L., Aznavoorian, S. A., Beckner, M. E., Liotta, L. A., and Schiffmann, E. (1991) Cell motility, a principal requirement for metastasis, in: Cell Motility Factors, ed. I. D. Goldberg. Birkhäuser Verlag, Basel, pp. 147–162. (this volume)Google Scholar
- Tashiro, K., Hagiya, M., Nishizawa, T., Seki, T., Shimonishi, M., Shimizu, S., and Naka- mura, T. (1990) Deduced primary structure of rat hepatocyte growth factor and expression of the mRNA in rat tissues. Proc. Natl. Acad. Sci. USA 87: 3200–3204.CrossRefGoogle Scholar
- Thurston, G., Jaggi, B., and Palcic, B. (1986) Cell motility measurements with an automated microscope system. Exptl. Cell. Res. 165: 380–390.CrossRefGoogle Scholar
- Thurston, G., Jaggi, B., and Palcic, B. (1988) Measurement of cell motility and morphology with an automated microscope system. Cytometry 9: 411–417.CrossRefGoogle Scholar
- Warn, R. M., and Dowrick, P. G. (1989) Motility factors on the march. Nature 340: 186–187.CrossRefGoogle Scholar
- Weidner, K. M., Behrens, J., Vandekerckhove, J., and Birchmeier, W. (1990) Scatter factor: Molecular chacteristics and effect on the invasiveness of epithelial cells. J. Cell Biol. 111: 2097–2108.CrossRefGoogle Scholar
- Welch, D. R., Fabra, A., and Nakajima, M. (1990) Transforming growth factor B stimulates mammary adenocarcinoma cell invasion and metastatic potential. Proc. Natl. Acad. Sci. USA 78: 7678–7682.CrossRefGoogle Scholar
- Wong, M. K. K., and Gotlieb, A. I. (1984) In vitro reendotheliahzation of a single-cell wound. Role of microfilament bundles in rapid lamellipodia-mediated wound closure. Laboratory Invest. 51: 75–81.Google Scholar