Cell Motility Factors pp 35-52 | Cite as
Neutrophil chemotactic factors
- 10 Citations
- 54 Downloads
Summary
Polymorphonuclear leukocytes (neutrophils) are recruited to inflammatory sites by a variety of soluble mediators (chemoattractants) that stimulate neutrophil directed migration (Chemotaxis). Many neutrophil chemoattractants such as neutrophil activating proteins, leukotriene B4 (LTB4), platelet activating factor, and complement-derived C5a, are generated endogeneously by host cells or enzymatic cleavage of host proteins. Other chemoattractants such as N-formyl peptides are generated exogenously by bacteria that invade the host. Oxidative modification of methionine residues or changes in the amino acid sequence of peptide chemoattractants dramatically alter their chemoattractive properties. Many of the well-defined neutrophil chemotactic factors and studies of their structure-function relationships will be reviewed.
Keywords
Human Neutrophil Chemotactic Factor Chemotactic Activity Neutrophil Chemoattractant Human Polymorphonuclear LeukocytePreview
Unable to display preview. Download preview PDF.
References
- Allen, B. R., and Littlewood, S. M. (1982) Benoxaprofen: effect on cutaneous lesions in psoriasis. Br. Med. J. 285: 1241.CrossRefGoogle Scholar
- Bebawy, S. T., Gorka, J., Hyers, T. M., and Webster, R. O. (1986) In vitro effects of platelet factor 4 on normal human neutrophil functions. J. Leuk. Biol. 39: 423–434.Google Scholar
- Becker, E. L., Showell, H. J., Henson, P. M., and Hsu, L. S. (1974) The ability of chemotactic factors to induce lysosomal enzyme release. I. The characteristics of the release, the importance of surfaces, and the relation of enzyme release to chemotactive responsiveness. J. Immunol. 112: 2047–2054.Google Scholar
- Borgeat, P., and Samuelsson, B. (1979) Metabolism of arachidonic acid in polymorphonuclear leukocytes: Structural analysis of novel hydroxylated compounds. J. Biol. Chem. 254: 7865–7869.Google Scholar
- Boulay, F., Tradif, M., Brouchon, L., and Vignais, P. (1990) Synthesis and use of a novel N-formyl peptide derivative to isolate a human N-formyl peptide receptor cDNA. Biochem. Biophys. Res. Commun. 168: 1103–1109.CrossRefGoogle Scholar
- Boxer, L. A., Yoder, M., Bonsib, S., Schmidt, M., Ho, P., Jersild, R., and Baehner, R. (1979) Effects of a chemotactic factor, N-formyl-methionyl peptide, on adherence, superoxide anion generation, phagocytosis and microtubule assembly of human polymorphonuclear leukocytes. J. Lab. Clin. Med. 93: 506–514.Google Scholar
- Brain, S. D., Camp, R. D. R., Doud, P. M., Kobza Black, A., and Greaves, M. W. (1984) The release of leukotriene B4-like material in biologically active amounts from the lesional skin of patients with psoriasis. J. Invest. Dermatol. 83: 70–73.CrossRefGoogle Scholar
- Bray, M. A. (1986) Leukotrienes in inflammation. Agents Actions 19: 87–99.CrossRefGoogle Scholar
- Bray, M. A., Ford-Hutchinson, A. W., and Smith, M. J. H. (1981) Leukotriene B4: an inflammatory mediator in vivo. Prostaglandins 22: 213–222.CrossRefGoogle Scholar
- Broekman, M. J., Handin, R. L, and Cohen, P. (1975) Distribution of fibrinogen, and platelet factor 4 and XIII in subcellular fractions of human platelets. Br. J. Hematol. 31: 51–55.CrossRefGoogle Scholar
- Bryant, G., Rao, C. N., Brentani, M., Martins, W., Lopes, J. D., Martin, S. E., Liotta, L. A., and Schiff’mann, E. (1987) A role for the laminin receptor in leukocyte Chemotaxis. J. Leuk. Biol. 41: 220–227.Google Scholar
- Bury, R. W., and Mashford, M. L. (1976) Interactions between local anesthetics and spasmogens on the guinea-pig ileum. J. Pharm. Exp. Ther. 197: 633–640.Google Scholar
- Chenoweth, D. E., and Hugli, T. E. (1978) Demonstration of specific C5a receptor on intact human polymorphonuclear leukocytes. Proc. Natl. Acad. Sci. USA 75: 3943–3947.CrossRefGoogle Scholar
- Clark, R. A., and Szot, S. (1982) Chemotactic factor inactivation by stimulated human neutrophils mediated by myeloperoxidase-catalyzed methionine oxidation. J. Immunol. 128: 1507–1513.Google Scholar
- Colditz, I., Zwahlen, R., Dewald, B., and Baggiolini, M. (1989) In vivo inflammatory activity of neutrophil activating factor, a novel chemotactic peptide derived from human monocytes. Am. J. Pathol. 134: 755–760.Google Scholar
- Demopoulos, C. A., Pinckard, R. N., and Hanahan, D. J. (1979) Platelet-activating factor. Evidence for l-O-alkyl-2-acetyl-sn-glyceryl-3-phosphoryl-choline as the active component (A new class of lipid chemical mediators). J. Biol. Chem. 254: 9355–9358.Google Scholar
- Deuel, T. F., Keim, D. S., Farmer, M., and Heinrikson, R. L. (1977) Human platelet factor 4: Complete amino acid sequence. Proc. Natl. Acad. Sci. USA 74: 2256–2258.CrossRefGoogle Scholar
- Deuel, T. F., Senior, R. M., Chang, D., Griffin, G. L., Heinrikson, R. L., and Kaiser, E. T. (1981) Platelet factor 4 is chemotactic for neutrophils and monocytes. Proc. Natl. Acad. Sci. USA 78: 4584–4587.CrossRefGoogle Scholar
- Fernandez, H. N., Henson, P. M., Otani, A., and Hugh, T. E. (1978) Chemotactic responses to human C3a and C5a anaphylatoxins. I. Evaluation of C3a and C5a leukotaxis in vitro and under stimulated in vitro conditions. J. Immunol. 120: 109–115.Google Scholar
- Fernandez, H. N., and Hugli, T. E. (1976) Partial characterization of human C5a anaphyla- toxin. I. Chemical description of the carbohydrate and polypeptide portions of human C5a. J. Immunol. 117: 1688–1694.Google Scholar
- Fliss, H., Vasanthakumar, G., Schiff’mann, E., Weissbach, H., and Brot, N. (1982) Enzymatic reduction of oxidized chemotactic peptide N-formyl-L-methionyl-sufloxide-L-leucyl-L- phenylalanine. Biochem. Biophys. Res. Commun. 109: 194–201.CrossRefGoogle Scholar
- Ford-Hutchinson, A. W., Bray, M. A., Doig, M. V., Shipley, M. E., and Smith, M. J. H. (1980) Leukotriene B4, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes. Nature 286: 264–265.CrossRefGoogle Scholar
- Franke, A. E., Andrews, G. C., Stimler-Gerard, N. P., Gerard, C. J., and Showell, H. J. (1988) Human C5a anaphylatoxin: gene synthesis, expression, and recovery of biologically active material from Escherichia coli. Meth. Enzymol. 162: 653–668.CrossRefGoogle Scholar
- Freer, R. J., Day, A. R., Radding, J. A., Schiffmann, E., Aswanikumar, S., Showell, H. J., and Becker, E. L. (1980) Further studies on the structural requirements for synthetic peptide chemoattractants. Biochemistry 19: 2404–2410.CrossRefGoogle Scholar
- Freer, R. J., Day, A. R., Muthukumaraswamy, N., Pinon, D., Wu, A., Showell, H. J., and Becker, E. L. (1982) Formyl peptide chemoattractants: A model of the receptor on rabbit neutrophils. Biochemistry 21: 257–263.CrossRefGoogle Scholar
- Gerard, C., and Hugli, T. E. (1981) Identification of classical anaphylatoxin as the des-Arg form of the C5a molecule: Evidence of a modulator role for the ohgosaccharide unit in human des-Arg74-C5a. Proc. Natl. Sci. USA 78: 1833–1837.CrossRefGoogle Scholar
- Gilman, S. C., Jeffrey, M., Schwartz, R., Milner, J., Bloom, F. E., and Feldman, J. D. (1982) β-endorphin enhances lymphocyte proliferative responses. Proc. Natl. Acad. Sci. USA 79: 4226–4230.CrossRefGoogle Scholar
- Goetzl, E. J., and Pickett, W. C. (1980) The human PMN leukocyte chemotactic activity of complex hydroxy-eicosatetraenoic acids (HETEs). J. Immunol. 125: 1789–1791.Google Scholar
- Goldman, D. W., Gifford, L. A., Young, R. N., and Goetzl, E. J. (1985) Affinity labeling of human neutrophil (N) receptors for leukotriene B4 (LTB4). Federation Proc. 44: 781.Google Scholar
- Goldman, D. W., and Goetzl, E. J. (1984) Heterogeneity of human polymorphonuclear leukocyte receptors for leukotriene B4. Identification of a subset of high affinity receptors that transduce the chemotactic response. J. Exp. Med. 159: 1027–1041.CrossRefGoogle Scholar
- Goldman, D. W., Hannah, A. L., and Goetzl, E. J. (1985) Inhibition of human receptor- mediated uptake of N-formyl-met-leu-phe by platelet factor 4(59–70). Immunology 54: 163–172.Google Scholar
- Harvath, L., and Aksamit, R. R. (1984) Oxidized N-formylmethionyl-leucyl-phenylalanine: Effect on the activation of human monocyte and neutrophil Chemotaxis and superoxide production. J. Immunol. 133: 1471–1476.Google Scholar
- Harvath, L, McCall, C. E., Bass, D. A., and McPhail, L. C. (1987) Inhibition of human neutrophil Chemotaxis by the protein kinase inhibitor, l-(5-isoquinolinesulfonyl) piperazine. J. Immunol. 139: 3055–3061.Google Scholar
- Hatch, G. E., Nichols, W. K., and Hill, H. R. (1977) Cyclic nucleotide changes in human neutrophils induced by chemoattractants and chemotactic modulators. J. Immunol. 119: 450–456.Google Scholar
- Hermodson, M., Schmer, G., and Kurachi, K. (1977) Isolation, characterization, and primary amino acid sequence of human platelet factor 4. J. Biol. Chem. 252: 6276–6279.Google Scholar
- Holt, J. C., and Niewiarowski, S. (1985) Biochemistry of a-granule proteins. Semin. Hematol. 22: 151–163.Google Scholar
- Hugli, T. E. (1981) The structural basis for anaphylatoxin and chemotactic function of C3a, C4a, and C5a. CRC Crit. Rev. Immunol. 2: 321–366.Google Scholar
- Hugli, T. E. (1984) Structure and function of the anaphylatoxins. Springer Semin. Immunopathol. 7: 193–219.CrossRefGoogle Scholar
- Hugli, T. E. (1986) Biochemistry and biology of anaphylatoxins. Complement 3: 111–127.Google Scholar
- Hugli, T. E., and Muller-Eberhard, H. J. (1978) Anaphylatoxins: C3a and C5a. Adv. Immunol 26: 1–53.CrossRefGoogle Scholar
- Humphrey, D. M., McManus, L. M., Hanahan, D. J., and Pinckard, R. N. (1984) Morphologic basis of increased vascular permeability induced by acetyl glyceryl ether phosphoryl- choline. Lab. Invest. 50: 16–25.Google Scholar
- Jensen, J. A., Synderman, R., and Mergenhagen, S. E. (1969) Chemotactic activity, a property of guinea pig C5-anaphylatoxin. In: H. Z. Movat (ed). Cellular and Humoral Mechanisms in Anaphylaxis and Allergy, S. Karger, Basel, pp. 265–273.Google Scholar
- Jessell, T. M., Iversen, I. I., Iversen, S. D., and Synder, S. H. (1983) The distribution of substance P in the central nervous system. In Handbook of Psychopharmacology. Plenum Press, New York. Vol. 16: pp. 1–105.CrossRefGoogle Scholar
- Johnson, R. J., and Chenoweth, D. E. (1985) Labeling the granulocyte C5a receptor with a unique photoreactive probe. J. Biol. Chem. 260: 7161–7164.Google Scholar
- Johnson, H. M., Smith, E. M., Torres, B. A., and Blalock, J. E. (1982) Regulation of the in vitro antibody response by neuroendocrine hormones. Proc. Natl. Acad. Sci. USA 79: 4171–4174.CrossRefGoogle Scholar
- Kaplin, K. L., Broekman, M. J., Chemoff, A., Leschnick, G. R., and Drilling, M. (1979) Platelet α-granule proteins: Studies on release and subcellular localization. Blood 53: 604–618.Google Scholar
- Kassis, V. (1985) Lipoxygenase inhibitor topically applied to psoriasis lesions. IRCS Med. Sci. 13: 182–183.Google Scholar
- Kew, R. R., and Webster, R. O. (1988) Gc-globulin (vitamin D-binding protein) enhances the neutrophil chemotactic activity of C5a and C5a des Arg. J. Clin. Invest. 82: 364–339.CrossRefGoogle Scholar
- Klickstein, L. B., Shapleigh, C., and Goetzl, E. J. (1980) Lipoxygenation of arachidonic acid as a source of polymorphonuclear leukocyte chemotactic factors in synovial fluid and tissue in rheumatoid arthritis and spondylarthritis. J. Clin. Invest. 66: 1166–1170.CrossRefGoogle Scholar
- Koo, C., Lefkowftz, R., and Snyderman, R. (1981) The oHgopeptide chemotactic factor receptor on human polymorphonuclear leukocyte membranes exists in two affinity states. Biochem. Biophys. Res. Commun. 106: 442–449.CrossRefGoogle Scholar
- Kreisle, R. A., and Parker, D. W. (1983) Specific binding of leukotriene B4 to a receptor on human polymorphonuclear leukocytes. J. Exp. Med. 157: 628–634.CrossRefGoogle Scholar
- Kruetzer, D. L., Claypool, W. D., Jones, M. L., and Ward, P. M. (1979) Isolation by hydrophobic chromatography of the chemotactic factor inactivators in human serum. Clin. Immunol. Immunopathol. 12: 162–176.CrossRefGoogle Scholar
- Larsen, C. G., Anderson, A. O., Appella, Oppenheim J. J., and Matsushima, K. (1989) The neutrophil-activating protein (NAP-1) is also chemotactic for T lymphocytes. Science 243: 1464–1466.CrossRefGoogle Scholar
- Leonard, E. J., and Yoshimura, T. (1990) Neutrophil attractant/activation protein-1 (NAP-1 [Interleukin-8]). Am. J. Respir. Cell. Mol. Biol. 2: 479–486.Google Scholar
- Leonard, E. J., Yoshimura, T., Rot, A., Noer, K., Walz, A., Baggiolini, M., Walz, D. A., Goetzl, E. J., and Castor, C. W. (1991) Chemotactic activity and receptor binding of neutrophil attractant/activation protein-1 (NAP-1) and structurally related host defense cytokines. Interaction of NAP-2 with the NAP-1 receptor. J. Leuk. Biol. 49: 258–265.Google Scholar
- Lindley, I., Aschauer, H., Scifert, J.-M., Lam, C., Brunowsky, W., Kownatzki, E., Thelen, M., Peveri, P., Dewald, B., von Tscharner, V., Walz, A., and Baggiolini, M. (1988) Synthesis and expression in Escherichia coli of the gene encoding monocyte-derived neutrophil activating factor: biological equivalence between natural and recombinant neutrophil-activating factor. Proc. Natl. Acad. Sci. USA 85: 9199–9203.CrossRefGoogle Scholar
- Lopker, A., Abood, L. G., Hoss, W., and Lionetti, F. J. (1980) Stereoselective muscarinic acetylcholine and opiate receptors in human phagocytic leukocytes. Biochem. Pharmacol. 29: 1361–1365.CrossRefGoogle Scholar
- Mackin, W. M., Huang, C.-K., and Becker, E. L. (1982) The formyl-peptide chemotactic receptor on rabbit peritoneal neutrophils. I. Evidence for two binding sites with different affinities. J. Immunol. 129: 1608–1611.Google Scholar
- Malmsten, C. L., Palmblad, J., Uden, A.-M., Radmark, O., Engstedt, L., and Samuelsson, B. (1980) Leukotriene B4: A highly potent and stereospecific factor stimulating migration of polymorphonuclear leukocytes. Acta Physiol. Scand. 110: 449–451.CrossRefGoogle Scholar
- Marasco, W. A., Phan, S. H., Krutzsch, H., Showell, H. J., Feltner, D. E., Nairn, R., Becker, E. L., and Ward, P. A. (1984) Purification and identification of Formyl-me- thionyl-leucyl-phenylalanine as the major peptide neutrophil chemotactic factor produced by Escherichia coli. J. Biol. Chem. 259: 5430–5439.Google Scholar
- Marasco, W. A., Showell, H. J., and Becker, E. L. (1981) Substance P binds to the formylpeptide Chemotaxis receptor on the rabbit neutrophil. Biochem. Biophys. Res. Commun. 99: 1065–1072.CrossRefGoogle Scholar
- Marceau, F., and Hugh, T. E. (1984) Effect of C3a and C5a anaphylatoxins on guinea-pig isolated blood vessels. J. Pharmacol. Exp. Ther. 230: 749–754.Google Scholar
- Martin, G. R., Kleinman, H. K., Terranova, V. P., Ledbetter, S., and Hassell, J. R. (1984) The regulation of basement membrane formation and cell-matrix interactions by defined supramolecular complexes, in: Basement Membranes and Cell Movement, Ciba Foundation Sym., Vol. 108. Pitman, London, pp. 197–212.Google Scholar
- Martin, G. R., Timpl, R., and Kuhn, K. (1988) Basement membrane proteins: molecular structure and function. Adv. Protein Chem. 39: 1–50.CrossRefGoogle Scholar
- McGarvey, M. L., Evercooren, B.-V., Kleinman, H. K., and Dubois-Dalcq, M. (1984) Synthesis and effects of basement membrane components in cultured rat Schwann cells. Dev. Biol. 105: 18–28.CrossRefGoogle Scholar
- Miyake, Y., Yasuhara, T., Fukui, K., Suginaka, H., Nakajima, T., and Moriyama T. (1983) Purification and characterization of neutrophil chemotactic factors of Streptococcus sanguis. Biochim. Biophys. Acta 758: 181–186.CrossRefGoogle Scholar
- Modi, W. S., Dean, M., Seuanez, H. N., Mukaida, N., Matsushima, K, and O’Brien S. J. (1990) Monocyte-derived neutrophil chemotactic factor (MDNCF/IL-8) resides in a gene cluster along with several other members of the platelet factor 4 gene superfamily. Hum. Genet. 84: 185–187.CrossRefGoogle Scholar
- Moser, B., Clark-Lewis, I., Zwahlen, R., and Baggiolini, M. (1990) Neutrophil-activating properties of the melanoma growth-stimulatory activity. J. Exp. Med. 171: 1797–1802.CrossRefGoogle Scholar
- Movat, H. Z., Rettl, C., Burrowes, C. E., and Johnston, M. G. (1984) The in vivo effect of leukotriene B4 on polymorphonuclear leukocytes and the microcirculation. Am. J. Pathol. 115: 233–244.Google Scholar
- O’Flaherty, J. T., Swendsen, C. L., Lees, C. J., and McCall, C. E. (1981) Role of extracellular calcium in neutrophil degranulation responses to l-O-alkyl-2-acyl-sn-glycero-3-phosphoryl- choline. Am. J. Pathol. 105: 107–113.Google Scholar
- Osterman, D. G., Griffin, G. L., Senior, R. M., Kaiser, E. T., and Deuel, T. F. (1982) The carboxy-terminal tridecapeptide of platelet factor 4 is a potent chemotactic agent for monocytes. Biochem. Biophys. Res. Commun. 107: 130–135.CrossRefGoogle Scholar
- Pinckard, R. N., Farr, R. S., and Hanahan, D. J. (1979) Physicochemical and functional identity of rabbit platelet-activating factor (PAF) released in vivo during IgE anaphylaxis with PAF released in vitro from IgE sensitized basophils. J. Immunol. 123: 1847–1857.Google Scholar
- Richmond, A., Balentien, E., Thomas, H. G., Flaggs, G., Barton, D. E., Spiess, J., Bordoni, R., Francke, U., and Derynck, R. (1988) Molecular characterization and chromosomal mapping of melanoma growth stimulatory activity, a growth factor structurally related to i9-thromboglobulin. EMBO J. 7: 2025–2033.Google Scholar
- Rot, A., Henderson, L. E., and Leonard, E. J. (1986) Staphylococcus aureus-derived chemoat- tractant activity for human monocytes. J. Leuk. Biol. 40: 43–53.Google Scholar
- Palmer, R. M. J., Steprey, R. J., Higgs, G. A., and Eakins, K. E. (1980) Chemotactic activity of arachidonic acid lipoxygenase products in leukocytes from different species. Prostaglandins 20: 411–418.CrossRefGoogle Scholar
- Park, K. S., Rifat, S., Eck, H., Adachi, K., Surrey, S., and Poncz, M. (1990) Biologic and biochemic properties of recombinant platelet factor 4 demonstrate identity with native protein. Blood 75: 1290–1295.Google Scholar
- Perez, H. D., Kelly, E., Chenoweth, D., and Elfman, F. (1988) Identification of the C5a des Arg cochemotaxin. Homology with vitamin D-binding protein (group-specific component globulin). J. Clin. Invest. 82: 360–363.CrossRefGoogle Scholar
- Polakis, P. G., Uhing, R., and Synderman, R. (1988) The formylpeptide chemoattractant receptor copurifies with a GTP-binding protein containing a distinct 40-kDa pertussis toxin substrate. J. Biol. Chem. 263: 4969–4976.Google Scholar
- Rampart, M., Van Damme, J., Zonnekeyn, L., and Herman, A. G. (1989) Granulocyte chemotactic protein/interleukin-8 induces plasma leakage and neutrophil accumulation in rabbit skin. Am. J. Pathol. 135: 21–25.Google Scholar
- Robbins, R. A., and Hamel, F. A. (1990) Chemotactic factor inactivator interaction with Gc-globulin (vitamin D-binding protein). A mechanism of modulating the chemotactic activity of C5a. J. Immunol. 144: 2371–2376.Google Scholar
- Robbins, R. A., Rasmussen, J. K., Clayton, M. E. Gossman, G. L., Kendall, T. J., and Rennard, S. I. (1987) Antigenic identification of chemotactic factor inactivator in normal human serum and bronchoalveolar lavage fluid. J. Lab. Clin. Med. 110: 292–299.Google Scholar
- Rollins, T. E. and Springer, M. S. (1985) Identification of the polymorphonuclear leukocyte C5a receptor. J. Biol. Chem. 260: 7157–7160.Google Scholar
- Rot, A., Henderson, L. E., Copeland, T. D., and Leonard, E. J. (1987) A series of six ligands for the human formyl peptide receptor: Tetrapeptides with high chemotactic potency and efficacy. Proc. Natl. Acad. Sci. 84: 7967–7971.CrossRefGoogle Scholar
- Samanta, A. K., Oppenheim, J. J., and Matsushima, K. (1990) Identification and characterization of specific receptors for monocyte-derived neutrophil chemotactic factor (MDNCF) on human neutrophils. J. Exp. Med 169: 1185–1189.CrossRefGoogle Scholar
- Samuelsson, B. (1982) The leukotrienes: An introduction, in: B. Samuelsson and R. Paoletti (eds.), Leukotrienes and Other Lipoxygenase Products. Raven Press, New York, pp. 1–27.Google Scholar
- Schiffmann, E., Corcoran, B. A., and Wahl, S. M. (1975) N-formyl-methionyl peptides as chemoattractants for leukocytes. Proc. Natl. Acad. Sci. USA 72: 1059–1062.CrossRefGoogle Scholar
- Schroder, J.-M., Persoon, N.-L. M., and Christophers, E. (1990) Lipopolysaccharide-stimu- lated human monocytes secrete, apart from neutrophil-activating peptide 1/interleukin 8, a second neutrophil-activating protein. NH2-terminal amino acid sequence identity with melanoma growth stimulatory activity. J. Exp. Med. 171: 1091–1100.CrossRefGoogle Scholar
- Schroder, J.-M., Sticherling, M., Persoon, N.-L. M., and Christophers, E. (1990) Identification of a novel platelet-derived neutrophil-chemotactic polypeptide with structural homology to platelet-factor 4. Biochem. Biophys. Res. Commun. 172: 898–904.CrossRefGoogle Scholar
- Seligmann, B., Fletcher, M., and Gallin, J. I. (1982) Adaptation of human neutrophil responsiveness to the chemoattractant N-formyl-methionyl-leucyl-phenylalanine: heterogeneity and/or negative co-operative interaction of receptors. J. Biol. Chem. 257: 6280- 6286.Google Scholar
- Shaw, J. O., Pinckard, R. N., Ferrigni, K. S., McManus, L. M., and Hanahan, D. J. (1981) Activation of human neutrophils with l-0-hexadecyl/octadecyl-2-acetyl-sn-glyceryl-3-phos- phorylcholine (platelet activating factor). J. Immunol. 127: 1250–1255.Google Scholar
- Showell, H. J., Freer, R. J., Zigmond, S. H., Schiffmann, E., Aswanikumar, S., Corcoran, B., and Becker, E. L. (1976) The structure-activity relationships of synthetic peptides as chemotactic factors and inducers of lysosomal enzyme secretion for neutrophils. J. Exp. Med. 143: 1154–1169.CrossRefGoogle Scholar
- Siciliano, S. J., Rollins, T. E., and Springer, M. S. (1990) Interaction between the C5a receptor and Gi in both membrane-bound and detergent-solubihzed states. J. Biol. Chem. 265: 19568–19574.Google Scholar
- Simchowitz, L., Fischbein, L. C., Spilberg, I., and Atkinson, J. P. (1980) Induction of a transient elevation in intracellular levels of adenosine-3’, 5’-cyclic monophosphate by chemotactic factors: an early event in human neutrophil activation. J. Immunol. 124: 1482–1491.Google Scholar
- Smith, R. J., Bowman, B. J., and Iden, S. S. (1984) Stimulation of the human neutrophil superoxide anion-generating system with l-O-hexacecyl/octadecyl-2-acetyl-sn-glyceryl-3- phosphorylcholine. Biochem. Pharmacol. 33: 973–978.CrossRefGoogle Scholar
- Smolen, J. E., Korchak, H. M., and Weissmann, G. (1980) Increased levels of cyclic adenosine-3’, 5’-monophosphate in human polymorphonuclear leukocytes after surface stimulation. J. Clin. Invest., 65: 1077–1085.CrossRefGoogle Scholar
- Soter, N. A., Lewis, R. A., Corey, E. J., and Austen, K. F. (1983) Local effects of synthetic leukortrienes (LTC4, LTD4, LTE4 and LTB4) in human skin. J. Invest. Dermatol. 80: 115–119.CrossRefGoogle Scholar
- Stewart, A. G., and Dusting, G. J. (1988) Characterization of receptors for platelet-activating factor on platelets, polymorphonuclear leukocytes and macrophages. Br. J. Pharmacol. 94: 1225–1233.Google Scholar
- Stimler, N. P., and O’Flaherty, J. T. (1983) Spasmogenic properties of platelet-activating factor: evidence for a direct mechanism in the contractile response of pulmonary tissues. Am. J. Pathol. 113: 75–84.Google Scholar
- Terranova, V. P., DiFlorio, R., Hujanen, E. S., Lyall, R. M., Liotta, L. A., Thorgeirsson, U., Siegal, G. P., and Schiffmann, E. (1986) Laminin promotes rabbit neutrophil motility and attachment. J. Clin. Invest. 77: 1180–1186.CrossRefGoogle Scholar
- Thorson, S. (1986) Leukotriene B4, a mediator of inflammation? Scand. J. Rheumatol. 15: 225–236.Google Scholar
- Toniolo, C., Bonora, G. M., Showell, H., Freer, R. J., and Becker, E. L. (1984) Structural requirements for formyl homooHgopeptide chemoattractants. Biochemistry 23: 698–704.CrossRefGoogle Scholar
- Tsan, M. F. and Chen, J. W. (1980) Oxidation of methionine by human polymorphonuclear leukocytes. J. Clin. Invest. 65: 1041–1050.CrossRefGoogle Scholar
- Tsan, M. F. and Denison, R. C. (1981) Oxidation of n-formyl methionyl chemotactic peptide by human neutrophils. J. Immunol. 126: 1387–1389.Google Scholar
- Van Epps, D. E., and Saland, L. (1984) β-endorphin and met-enkephahn stimulate human peripheral blood mononuclear cell Chemotaxis. J. Immunol. 132: 3046–3053.Google Scholar
- Walz, A., Dewald, B., von Tscharner, V., and Baggiolini, M. (1989) Effects of the neutrophil- activating peptide NAP-2, platelet basic protein, connective tissue-activating peptide III, and platelet factor 4 on human neutrophils. J. Exp. Med. 170: 1745–1750.CrossRefGoogle Scholar
- Walz, A., and Baggiolini, M. (1989) A novel cleavage product of beta-thromboglobulin formed in cultures of stimulated mononuclear cells activates human neutrophils. Biochem. Biophys. Res. Commun. 159: 969–975.CrossRefGoogle Scholar
- Walz, A., and Baggiolini, M. (1990) Generation of the neutrophil-activating peptide NAP-2 from platelet basic protein or connective tissue activating peptide III through monocyte proteases. J. Exp. Med. 171: 449–454.CrossRefGoogle Scholar
- Ward, P. A., and Newman, L. J. (1969) A neutrophil chemotactic factor from human C5. J. Immunol. 102: 93–99.Google Scholar
- Ward, P. A., and Ozols, J. (1973) Characterization of the protease activity in the chemotactic factor inactivator. J. Clin. Invest. 58: 123–129.CrossRefGoogle Scholar
- Webster, R. O., Hong, S. R., Johnston, R. B., and Henson, P. M. (1980) Biological effects of the human complement fragments C5 anc C5a des Arg on neutrophil function. Im- munopharmacology 2: 201–219.Google Scholar
- White, J. R., Naccache, P. H., Molski, T. F. P., Borgeat, P., and Sha’afi, R. I. (1983) Direct demonstration of increased intracellular concentration of free calcium in rabbit and human neutrophils following stimulation by chemotactic factor. Biochem. Biophys. Res. Commun. 113: 44–50.CrossRefGoogle Scholar
- Yoshimura, T., Matsushima, K., Oppenheim, J. J., and Leonard, E. J. (1987) Neutrophil chemotactic factor produced by lipopolysaccharide (LPS) stimulated human blood mononuclear leukocytes. I Partial characterization and separation from interleukin-1 (IL-1). J. Immunol. 139: 788–793.Google Scholar
- Zigmond, S. H. (1981) Consequences of chemotactic peptide receptor modulation for leukocyte orientation. J. Cell Biol. 88: 644–647.CrossRefGoogle Scholar
- Zigmond, S. H., and Sullivan, S. J. (1979) Sensory adaptation of leukocytes to chemotactic peptides. J. Cell Biol. 82: 517–527.CrossRefGoogle Scholar