Advertisement

Neutrophil chemotactic factors

  • Liana Harvath
Chapter
Part of the Experientia Supplementum book series (EXS, volume 59)

Summary

Polymorphonuclear leukocytes (neutrophils) are recruited to inflammatory sites by a variety of soluble mediators (chemoattractants) that stimulate neutrophil directed migration (Chemotaxis). Many neutrophil chemoattractants such as neutrophil activating proteins, leukotriene B4 (LTB4), platelet activating factor, and complement-derived C5a, are generated endogeneously by host cells or enzymatic cleavage of host proteins. Other chemoattractants such as N-formyl peptides are generated exogenously by bacteria that invade the host. Oxidative modification of methionine residues or changes in the amino acid sequence of peptide chemoattractants dramatically alter their chemoattractive properties. Many of the well-defined neutrophil chemotactic factors and studies of their structure-function relationships will be reviewed.

Keywords

Human Neutrophil Chemotactic Factor Chemotactic Activity Neutrophil Chemoattractant Human Polymorphonuclear Leukocyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, B. R., and Littlewood, S. M. (1982) Benoxaprofen: effect on cutaneous lesions in psoriasis. Br. Med. J. 285: 1241.CrossRefGoogle Scholar
  2. Bebawy, S. T., Gorka, J., Hyers, T. M., and Webster, R. O. (1986) In vitro effects of platelet factor 4 on normal human neutrophil functions. J. Leuk. Biol. 39: 423–434.Google Scholar
  3. Becker, E. L., Showell, H. J., Henson, P. M., and Hsu, L. S. (1974) The ability of chemotactic factors to induce lysosomal enzyme release. I. The characteristics of the release, the importance of surfaces, and the relation of enzyme release to chemotactive responsiveness. J. Immunol. 112: 2047–2054.Google Scholar
  4. Borgeat, P., and Samuelsson, B. (1979) Metabolism of arachidonic acid in polymorphonuclear leukocytes: Structural analysis of novel hydroxylated compounds. J. Biol. Chem. 254: 7865–7869.Google Scholar
  5. Boulay, F., Tradif, M., Brouchon, L., and Vignais, P. (1990) Synthesis and use of a novel N-formyl peptide derivative to isolate a human N-formyl peptide receptor cDNA. Biochem. Biophys. Res. Commun. 168: 1103–1109.CrossRefGoogle Scholar
  6. Boxer, L. A., Yoder, M., Bonsib, S., Schmidt, M., Ho, P., Jersild, R., and Baehner, R. (1979) Effects of a chemotactic factor, N-formyl-methionyl peptide, on adherence, superoxide anion generation, phagocytosis and microtubule assembly of human polymorphonuclear leukocytes. J. Lab. Clin. Med. 93: 506–514.Google Scholar
  7. Brain, S. D., Camp, R. D. R., Doud, P. M., Kobza Black, A., and Greaves, M. W. (1984) The release of leukotriene B4-like material in biologically active amounts from the lesional skin of patients with psoriasis. J. Invest. Dermatol. 83: 70–73.CrossRefGoogle Scholar
  8. Bray, M. A. (1986) Leukotrienes in inflammation. Agents Actions 19: 87–99.CrossRefGoogle Scholar
  9. Bray, M. A., Ford-Hutchinson, A. W., and Smith, M. J. H. (1981) Leukotriene B4: an inflammatory mediator in vivo. Prostaglandins 22: 213–222.CrossRefGoogle Scholar
  10. Broekman, M. J., Handin, R. L, and Cohen, P. (1975) Distribution of fibrinogen, and platelet factor 4 and XIII in subcellular fractions of human platelets. Br. J. Hematol. 31: 51–55.CrossRefGoogle Scholar
  11. Bryant, G., Rao, C. N., Brentani, M., Martins, W., Lopes, J. D., Martin, S. E., Liotta, L. A., and Schiff’mann, E. (1987) A role for the laminin receptor in leukocyte Chemotaxis. J. Leuk. Biol. 41: 220–227.Google Scholar
  12. Bury, R. W., and Mashford, M. L. (1976) Interactions between local anesthetics and spasmogens on the guinea-pig ileum. J. Pharm. Exp. Ther. 197: 633–640.Google Scholar
  13. Chenoweth, D. E., and Hugli, T. E. (1978) Demonstration of specific C5a receptor on intact human polymorphonuclear leukocytes. Proc. Natl. Acad. Sci. USA 75: 3943–3947.CrossRefGoogle Scholar
  14. Clark, R. A., and Szot, S. (1982) Chemotactic factor inactivation by stimulated human neutrophils mediated by myeloperoxidase-catalyzed methionine oxidation. J. Immunol. 128: 1507–1513.Google Scholar
  15. Colditz, I., Zwahlen, R., Dewald, B., and Baggiolini, M. (1989) In vivo inflammatory activity of neutrophil activating factor, a novel chemotactic peptide derived from human monocytes. Am. J. Pathol. 134: 755–760.Google Scholar
  16. Demopoulos, C. A., Pinckard, R. N., and Hanahan, D. J. (1979) Platelet-activating factor. Evidence for l-O-alkyl-2-acetyl-sn-glyceryl-3-phosphoryl-choline as the active component (A new class of lipid chemical mediators). J. Biol. Chem. 254: 9355–9358.Google Scholar
  17. Deuel, T. F., Keim, D. S., Farmer, M., and Heinrikson, R. L. (1977) Human platelet factor 4: Complete amino acid sequence. Proc. Natl. Acad. Sci. USA 74: 2256–2258.CrossRefGoogle Scholar
  18. Deuel, T. F., Senior, R. M., Chang, D., Griffin, G. L., Heinrikson, R. L., and Kaiser, E. T. (1981) Platelet factor 4 is chemotactic for neutrophils and monocytes. Proc. Natl. Acad. Sci. USA 78: 4584–4587.CrossRefGoogle Scholar
  19. Fernandez, H. N., Henson, P. M., Otani, A., and Hugh, T. E. (1978) Chemotactic responses to human C3a and C5a anaphylatoxins. I. Evaluation of C3a and C5a leukotaxis in vitro and under stimulated in vitro conditions. J. Immunol. 120: 109–115.Google Scholar
  20. Fernandez, H. N., and Hugli, T. E. (1976) Partial characterization of human C5a anaphyla- toxin. I. Chemical description of the carbohydrate and polypeptide portions of human C5a. J. Immunol. 117: 1688–1694.Google Scholar
  21. Fliss, H., Vasanthakumar, G., Schiff’mann, E., Weissbach, H., and Brot, N. (1982) Enzymatic reduction of oxidized chemotactic peptide N-formyl-L-methionyl-sufloxide-L-leucyl-L- phenylalanine. Biochem. Biophys. Res. Commun. 109: 194–201.CrossRefGoogle Scholar
  22. Ford-Hutchinson, A. W., Bray, M. A., Doig, M. V., Shipley, M. E., and Smith, M. J. H. (1980) Leukotriene B4, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes. Nature 286: 264–265.CrossRefGoogle Scholar
  23. Franke, A. E., Andrews, G. C., Stimler-Gerard, N. P., Gerard, C. J., and Showell, H. J. (1988) Human C5a anaphylatoxin: gene synthesis, expression, and recovery of biologically active material from Escherichia coli. Meth. Enzymol. 162: 653–668.CrossRefGoogle Scholar
  24. Freer, R. J., Day, A. R., Radding, J. A., Schiffmann, E., Aswanikumar, S., Showell, H. J., and Becker, E. L. (1980) Further studies on the structural requirements for synthetic peptide chemoattractants. Biochemistry 19: 2404–2410.CrossRefGoogle Scholar
  25. Freer, R. J., Day, A. R., Muthukumaraswamy, N., Pinon, D., Wu, A., Showell, H. J., and Becker, E. L. (1982) Formyl peptide chemoattractants: A model of the receptor on rabbit neutrophils. Biochemistry 21: 257–263.CrossRefGoogle Scholar
  26. Gerard, C., and Hugli, T. E. (1981) Identification of classical anaphylatoxin as the des-Arg form of the C5a molecule: Evidence of a modulator role for the ohgosaccharide unit in human des-Arg74-C5a. Proc. Natl. Sci. USA 78: 1833–1837.CrossRefGoogle Scholar
  27. Gilman, S. C., Jeffrey, M., Schwartz, R., Milner, J., Bloom, F. E., and Feldman, J. D. (1982) β-endorphin enhances lymphocyte proliferative responses. Proc. Natl. Acad. Sci. USA 79: 4226–4230.CrossRefGoogle Scholar
  28. Goetzl, E. J., and Pickett, W. C. (1980) The human PMN leukocyte chemotactic activity of complex hydroxy-eicosatetraenoic acids (HETEs). J. Immunol. 125: 1789–1791.Google Scholar
  29. Goldman, D. W., Gifford, L. A., Young, R. N., and Goetzl, E. J. (1985) Affinity labeling of human neutrophil (N) receptors for leukotriene B4 (LTB4). Federation Proc. 44: 781.Google Scholar
  30. Goldman, D. W., and Goetzl, E. J. (1984) Heterogeneity of human polymorphonuclear leukocyte receptors for leukotriene B4. Identification of a subset of high affinity receptors that transduce the chemotactic response. J. Exp. Med. 159: 1027–1041.CrossRefGoogle Scholar
  31. Goldman, D. W., Hannah, A. L., and Goetzl, E. J. (1985) Inhibition of human receptor- mediated uptake of N-formyl-met-leu-phe by platelet factor 4(59–70). Immunology 54: 163–172.Google Scholar
  32. Harvath, L., and Aksamit, R. R. (1984) Oxidized N-formylmethionyl-leucyl-phenylalanine: Effect on the activation of human monocyte and neutrophil Chemotaxis and superoxide production. J. Immunol. 133: 1471–1476.Google Scholar
  33. Harvath, L, McCall, C. E., Bass, D. A., and McPhail, L. C. (1987) Inhibition of human neutrophil Chemotaxis by the protein kinase inhibitor, l-(5-isoquinolinesulfonyl) piperazine. J. Immunol. 139: 3055–3061.Google Scholar
  34. Hatch, G. E., Nichols, W. K., and Hill, H. R. (1977) Cyclic nucleotide changes in human neutrophils induced by chemoattractants and chemotactic modulators. J. Immunol. 119: 450–456.Google Scholar
  35. Hermodson, M., Schmer, G., and Kurachi, K. (1977) Isolation, characterization, and primary amino acid sequence of human platelet factor 4. J. Biol. Chem. 252: 6276–6279.Google Scholar
  36. Holt, J. C., and Niewiarowski, S. (1985) Biochemistry of a-granule proteins. Semin. Hematol. 22: 151–163.Google Scholar
  37. Hugli, T. E. (1981) The structural basis for anaphylatoxin and chemotactic function of C3a, C4a, and C5a. CRC Crit. Rev. Immunol. 2: 321–366.Google Scholar
  38. Hugli, T. E. (1984) Structure and function of the anaphylatoxins. Springer Semin. Immunopathol. 7: 193–219.CrossRefGoogle Scholar
  39. Hugli, T. E. (1986) Biochemistry and biology of anaphylatoxins. Complement 3: 111–127.Google Scholar
  40. Hugli, T. E., and Muller-Eberhard, H. J. (1978) Anaphylatoxins: C3a and C5a. Adv. Immunol 26: 1–53.CrossRefGoogle Scholar
  41. Humphrey, D. M., McManus, L. M., Hanahan, D. J., and Pinckard, R. N. (1984) Morphologic basis of increased vascular permeability induced by acetyl glyceryl ether phosphoryl- choline. Lab. Invest. 50: 16–25.Google Scholar
  42. Jensen, J. A., Synderman, R., and Mergenhagen, S. E. (1969) Chemotactic activity, a property of guinea pig C5-anaphylatoxin. In: H. Z. Movat (ed). Cellular and Humoral Mechanisms in Anaphylaxis and Allergy, S. Karger, Basel, pp. 265–273.Google Scholar
  43. Jessell, T. M., Iversen, I. I., Iversen, S. D., and Synder, S. H. (1983) The distribution of substance P in the central nervous system. In Handbook of Psychopharmacology. Plenum Press, New York. Vol. 16: pp. 1–105.CrossRefGoogle Scholar
  44. Johnson, R. J., and Chenoweth, D. E. (1985) Labeling the granulocyte C5a receptor with a unique photoreactive probe. J. Biol. Chem. 260: 7161–7164.Google Scholar
  45. Johnson, H. M., Smith, E. M., Torres, B. A., and Blalock, J. E. (1982) Regulation of the in vitro antibody response by neuroendocrine hormones. Proc. Natl. Acad. Sci. USA 79: 4171–4174.CrossRefGoogle Scholar
  46. Kaplin, K. L., Broekman, M. J., Chemoff, A., Leschnick, G. R., and Drilling, M. (1979) Platelet α-granule proteins: Studies on release and subcellular localization. Blood 53: 604–618.Google Scholar
  47. Kassis, V. (1985) Lipoxygenase inhibitor topically applied to psoriasis lesions. IRCS Med. Sci. 13: 182–183.Google Scholar
  48. Kew, R. R., and Webster, R. O. (1988) Gc-globulin (vitamin D-binding protein) enhances the neutrophil chemotactic activity of C5a and C5a des Arg. J. Clin. Invest. 82: 364–339.CrossRefGoogle Scholar
  49. Klickstein, L. B., Shapleigh, C., and Goetzl, E. J. (1980) Lipoxygenation of arachidonic acid as a source of polymorphonuclear leukocyte chemotactic factors in synovial fluid and tissue in rheumatoid arthritis and spondylarthritis. J. Clin. Invest. 66: 1166–1170.CrossRefGoogle Scholar
  50. Koo, C., Lefkowftz, R., and Snyderman, R. (1981) The oHgopeptide chemotactic factor receptor on human polymorphonuclear leukocyte membranes exists in two affinity states. Biochem. Biophys. Res. Commun. 106: 442–449.CrossRefGoogle Scholar
  51. Kreisle, R. A., and Parker, D. W. (1983) Specific binding of leukotriene B4 to a receptor on human polymorphonuclear leukocytes. J. Exp. Med. 157: 628–634.CrossRefGoogle Scholar
  52. Kruetzer, D. L., Claypool, W. D., Jones, M. L., and Ward, P. M. (1979) Isolation by hydrophobic chromatography of the chemotactic factor inactivators in human serum. Clin. Immunol. Immunopathol. 12: 162–176.CrossRefGoogle Scholar
  53. Larsen, C. G., Anderson, A. O., Appella, Oppenheim J. J., and Matsushima, K. (1989) The neutrophil-activating protein (NAP-1) is also chemotactic for T lymphocytes. Science 243: 1464–1466.CrossRefGoogle Scholar
  54. Leonard, E. J., and Yoshimura, T. (1990) Neutrophil attractant/activation protein-1 (NAP-1 [Interleukin-8]). Am. J. Respir. Cell. Mol. Biol. 2: 479–486.Google Scholar
  55. Leonard, E. J., Yoshimura, T., Rot, A., Noer, K., Walz, A., Baggiolini, M., Walz, D. A., Goetzl, E. J., and Castor, C. W. (1991) Chemotactic activity and receptor binding of neutrophil attractant/activation protein-1 (NAP-1) and structurally related host defense cytokines. Interaction of NAP-2 with the NAP-1 receptor. J. Leuk. Biol. 49: 258–265.Google Scholar
  56. Lindley, I., Aschauer, H., Scifert, J.-M., Lam, C., Brunowsky, W., Kownatzki, E., Thelen, M., Peveri, P., Dewald, B., von Tscharner, V., Walz, A., and Baggiolini, M. (1988) Synthesis and expression in Escherichia coli of the gene encoding monocyte-derived neutrophil activating factor: biological equivalence between natural and recombinant neutrophil-activating factor. Proc. Natl. Acad. Sci. USA 85: 9199–9203.CrossRefGoogle Scholar
  57. Lopker, A., Abood, L. G., Hoss, W., and Lionetti, F. J. (1980) Stereoselective muscarinic acetylcholine and opiate receptors in human phagocytic leukocytes. Biochem. Pharmacol. 29: 1361–1365.CrossRefGoogle Scholar
  58. Mackin, W. M., Huang, C.-K., and Becker, E. L. (1982) The formyl-peptide chemotactic receptor on rabbit peritoneal neutrophils. I. Evidence for two binding sites with different affinities. J. Immunol. 129: 1608–1611.Google Scholar
  59. Malmsten, C. L., Palmblad, J., Uden, A.-M., Radmark, O., Engstedt, L., and Samuelsson, B. (1980) Leukotriene B4: A highly potent and stereospecific factor stimulating migration of polymorphonuclear leukocytes. Acta Physiol. Scand. 110: 449–451.CrossRefGoogle Scholar
  60. Marasco, W. A., Phan, S. H., Krutzsch, H., Showell, H. J., Feltner, D. E., Nairn, R., Becker, E. L., and Ward, P. A. (1984) Purification and identification of Formyl-me- thionyl-leucyl-phenylalanine as the major peptide neutrophil chemotactic factor produced by Escherichia coli. J. Biol. Chem. 259: 5430–5439.Google Scholar
  61. Marasco, W. A., Showell, H. J., and Becker, E. L. (1981) Substance P binds to the formylpeptide Chemotaxis receptor on the rabbit neutrophil. Biochem. Biophys. Res. Commun. 99: 1065–1072.CrossRefGoogle Scholar
  62. Marceau, F., and Hugh, T. E. (1984) Effect of C3a and C5a anaphylatoxins on guinea-pig isolated blood vessels. J. Pharmacol. Exp. Ther. 230: 749–754.Google Scholar
  63. Martin, G. R., Kleinman, H. K., Terranova, V. P., Ledbetter, S., and Hassell, J. R. (1984) The regulation of basement membrane formation and cell-matrix interactions by defined supramolecular complexes, in: Basement Membranes and Cell Movement, Ciba Foundation Sym., Vol. 108. Pitman, London, pp. 197–212.Google Scholar
  64. Martin, G. R., Timpl, R., and Kuhn, K. (1988) Basement membrane proteins: molecular structure and function. Adv. Protein Chem. 39: 1–50.CrossRefGoogle Scholar
  65. McGarvey, M. L., Evercooren, B.-V., Kleinman, H. K., and Dubois-Dalcq, M. (1984) Synthesis and effects of basement membrane components in cultured rat Schwann cells. Dev. Biol. 105: 18–28.CrossRefGoogle Scholar
  66. Miyake, Y., Yasuhara, T., Fukui, K., Suginaka, H., Nakajima, T., and Moriyama T. (1983) Purification and characterization of neutrophil chemotactic factors of Streptococcus sanguis. Biochim. Biophys. Acta 758: 181–186.CrossRefGoogle Scholar
  67. Modi, W. S., Dean, M., Seuanez, H. N., Mukaida, N., Matsushima, K, and O’Brien S. J. (1990) Monocyte-derived neutrophil chemotactic factor (MDNCF/IL-8) resides in a gene cluster along with several other members of the platelet factor 4 gene superfamily. Hum. Genet. 84: 185–187.CrossRefGoogle Scholar
  68. Moser, B., Clark-Lewis, I., Zwahlen, R., and Baggiolini, M. (1990) Neutrophil-activating properties of the melanoma growth-stimulatory activity. J. Exp. Med. 171: 1797–1802.CrossRefGoogle Scholar
  69. Movat, H. Z., Rettl, C., Burrowes, C. E., and Johnston, M. G. (1984) The in vivo effect of leukotriene B4 on polymorphonuclear leukocytes and the microcirculation. Am. J. Pathol. 115: 233–244.Google Scholar
  70. O’Flaherty, J. T., Swendsen, C. L., Lees, C. J., and McCall, C. E. (1981) Role of extracellular calcium in neutrophil degranulation responses to l-O-alkyl-2-acyl-sn-glycero-3-phosphoryl- choline. Am. J. Pathol. 105: 107–113.Google Scholar
  71. Osterman, D. G., Griffin, G. L., Senior, R. M., Kaiser, E. T., and Deuel, T. F. (1982) The carboxy-terminal tridecapeptide of platelet factor 4 is a potent chemotactic agent for monocytes. Biochem. Biophys. Res. Commun. 107: 130–135.CrossRefGoogle Scholar
  72. Pinckard, R. N., Farr, R. S., and Hanahan, D. J. (1979) Physicochemical and functional identity of rabbit platelet-activating factor (PAF) released in vivo during IgE anaphylaxis with PAF released in vitro from IgE sensitized basophils. J. Immunol. 123: 1847–1857.Google Scholar
  73. Richmond, A., Balentien, E., Thomas, H. G., Flaggs, G., Barton, D. E., Spiess, J., Bordoni, R., Francke, U., and Derynck, R. (1988) Molecular characterization and chromosomal mapping of melanoma growth stimulatory activity, a growth factor structurally related to i9-thromboglobulin. EMBO J. 7: 2025–2033.Google Scholar
  74. Rot, A., Henderson, L. E., and Leonard, E. J. (1986) Staphylococcus aureus-derived chemoat- tractant activity for human monocytes. J. Leuk. Biol. 40: 43–53.Google Scholar
  75. Palmer, R. M. J., Steprey, R. J., Higgs, G. A., and Eakins, K. E. (1980) Chemotactic activity of arachidonic acid lipoxygenase products in leukocytes from different species. Prostaglandins 20: 411–418.CrossRefGoogle Scholar
  76. Park, K. S., Rifat, S., Eck, H., Adachi, K., Surrey, S., and Poncz, M. (1990) Biologic and biochemic properties of recombinant platelet factor 4 demonstrate identity with native protein. Blood 75: 1290–1295.Google Scholar
  77. Perez, H. D., Kelly, E., Chenoweth, D., and Elfman, F. (1988) Identification of the C5a des Arg cochemotaxin. Homology with vitamin D-binding protein (group-specific component globulin). J. Clin. Invest. 82: 360–363.CrossRefGoogle Scholar
  78. Polakis, P. G., Uhing, R., and Synderman, R. (1988) The formylpeptide chemoattractant receptor copurifies with a GTP-binding protein containing a distinct 40-kDa pertussis toxin substrate. J. Biol. Chem. 263: 4969–4976.Google Scholar
  79. Rampart, M., Van Damme, J., Zonnekeyn, L., and Herman, A. G. (1989) Granulocyte chemotactic protein/interleukin-8 induces plasma leakage and neutrophil accumulation in rabbit skin. Am. J. Pathol. 135: 21–25.Google Scholar
  80. Robbins, R. A., and Hamel, F. A. (1990) Chemotactic factor inactivator interaction with Gc-globulin (vitamin D-binding protein). A mechanism of modulating the chemotactic activity of C5a. J. Immunol. 144: 2371–2376.Google Scholar
  81. Robbins, R. A., Rasmussen, J. K., Clayton, M. E. Gossman, G. L., Kendall, T. J., and Rennard, S. I. (1987) Antigenic identification of chemotactic factor inactivator in normal human serum and bronchoalveolar lavage fluid. J. Lab. Clin. Med. 110: 292–299.Google Scholar
  82. Rollins, T. E. and Springer, M. S. (1985) Identification of the polymorphonuclear leukocyte C5a receptor. J. Biol. Chem. 260: 7157–7160.Google Scholar
  83. Rot, A., Henderson, L. E., Copeland, T. D., and Leonard, E. J. (1987) A series of six ligands for the human formyl peptide receptor: Tetrapeptides with high chemotactic potency and efficacy. Proc. Natl. Acad. Sci. 84: 7967–7971.CrossRefGoogle Scholar
  84. Samanta, A. K., Oppenheim, J. J., and Matsushima, K. (1990) Identification and characterization of specific receptors for monocyte-derived neutrophil chemotactic factor (MDNCF) on human neutrophils. J. Exp. Med 169: 1185–1189.CrossRefGoogle Scholar
  85. Samuelsson, B. (1982) The leukotrienes: An introduction, in: B. Samuelsson and R. Paoletti (eds.), Leukotrienes and Other Lipoxygenase Products. Raven Press, New York, pp. 1–27.Google Scholar
  86. Schiffmann, E., Corcoran, B. A., and Wahl, S. M. (1975) N-formyl-methionyl peptides as chemoattractants for leukocytes. Proc. Natl. Acad. Sci. USA 72: 1059–1062.CrossRefGoogle Scholar
  87. Schroder, J.-M., Persoon, N.-L. M., and Christophers, E. (1990) Lipopolysaccharide-stimu- lated human monocytes secrete, apart from neutrophil-activating peptide 1/interleukin 8, a second neutrophil-activating protein. NH2-terminal amino acid sequence identity with melanoma growth stimulatory activity. J. Exp. Med. 171: 1091–1100.CrossRefGoogle Scholar
  88. Schroder, J.-M., Sticherling, M., Persoon, N.-L. M., and Christophers, E. (1990) Identification of a novel platelet-derived neutrophil-chemotactic polypeptide with structural homology to platelet-factor 4. Biochem. Biophys. Res. Commun. 172: 898–904.CrossRefGoogle Scholar
  89. Seligmann, B., Fletcher, M., and Gallin, J. I. (1982) Adaptation of human neutrophil responsiveness to the chemoattractant N-formyl-methionyl-leucyl-phenylalanine: heterogeneity and/or negative co-operative interaction of receptors. J. Biol. Chem. 257: 6280- 6286.Google Scholar
  90. Shaw, J. O., Pinckard, R. N., Ferrigni, K. S., McManus, L. M., and Hanahan, D. J. (1981) Activation of human neutrophils with l-0-hexadecyl/octadecyl-2-acetyl-sn-glyceryl-3-phos- phorylcholine (platelet activating factor). J. Immunol. 127: 1250–1255.Google Scholar
  91. Showell, H. J., Freer, R. J., Zigmond, S. H., Schiffmann, E., Aswanikumar, S., Corcoran, B., and Becker, E. L. (1976) The structure-activity relationships of synthetic peptides as chemotactic factors and inducers of lysosomal enzyme secretion for neutrophils. J. Exp. Med. 143: 1154–1169.CrossRefGoogle Scholar
  92. Siciliano, S. J., Rollins, T. E., and Springer, M. S. (1990) Interaction between the C5a receptor and Gi in both membrane-bound and detergent-solubihzed states. J. Biol. Chem. 265: 19568–19574.Google Scholar
  93. Simchowitz, L., Fischbein, L. C., Spilberg, I., and Atkinson, J. P. (1980) Induction of a transient elevation in intracellular levels of adenosine-3’, 5’-cyclic monophosphate by chemotactic factors: an early event in human neutrophil activation. J. Immunol. 124: 1482–1491.Google Scholar
  94. Smith, R. J., Bowman, B. J., and Iden, S. S. (1984) Stimulation of the human neutrophil superoxide anion-generating system with l-O-hexacecyl/octadecyl-2-acetyl-sn-glyceryl-3- phosphorylcholine. Biochem. Pharmacol. 33: 973–978.CrossRefGoogle Scholar
  95. Smolen, J. E., Korchak, H. M., and Weissmann, G. (1980) Increased levels of cyclic adenosine-3’, 5’-monophosphate in human polymorphonuclear leukocytes after surface stimulation. J. Clin. Invest., 65: 1077–1085.CrossRefGoogle Scholar
  96. Soter, N. A., Lewis, R. A., Corey, E. J., and Austen, K. F. (1983) Local effects of synthetic leukortrienes (LTC4, LTD4, LTE4 and LTB4) in human skin. J. Invest. Dermatol. 80: 115–119.CrossRefGoogle Scholar
  97. Stewart, A. G., and Dusting, G. J. (1988) Characterization of receptors for platelet-activating factor on platelets, polymorphonuclear leukocytes and macrophages. Br. J. Pharmacol. 94: 1225–1233.Google Scholar
  98. Stimler, N. P., and O’Flaherty, J. T. (1983) Spasmogenic properties of platelet-activating factor: evidence for a direct mechanism in the contractile response of pulmonary tissues. Am. J. Pathol. 113: 75–84.Google Scholar
  99. Terranova, V. P., DiFlorio, R., Hujanen, E. S., Lyall, R. M., Liotta, L. A., Thorgeirsson, U., Siegal, G. P., and Schiffmann, E. (1986) Laminin promotes rabbit neutrophil motility and attachment. J. Clin. Invest. 77: 1180–1186.CrossRefGoogle Scholar
  100. Thorson, S. (1986) Leukotriene B4, a mediator of inflammation? Scand. J. Rheumatol. 15: 225–236.Google Scholar
  101. Toniolo, C., Bonora, G. M., Showell, H., Freer, R. J., and Becker, E. L. (1984) Structural requirements for formyl homooHgopeptide chemoattractants. Biochemistry 23: 698–704.CrossRefGoogle Scholar
  102. Tsan, M. F. and Chen, J. W. (1980) Oxidation of methionine by human polymorphonuclear leukocytes. J. Clin. Invest. 65: 1041–1050.CrossRefGoogle Scholar
  103. Tsan, M. F. and Denison, R. C. (1981) Oxidation of n-formyl methionyl chemotactic peptide by human neutrophils. J. Immunol. 126: 1387–1389.Google Scholar
  104. Van Epps, D. E., and Saland, L. (1984) β-endorphin and met-enkephahn stimulate human peripheral blood mononuclear cell Chemotaxis. J. Immunol. 132: 3046–3053.Google Scholar
  105. Walz, A., Dewald, B., von Tscharner, V., and Baggiolini, M. (1989) Effects of the neutrophil- activating peptide NAP-2, platelet basic protein, connective tissue-activating peptide III, and platelet factor 4 on human neutrophils. J. Exp. Med. 170: 1745–1750.CrossRefGoogle Scholar
  106. Walz, A., and Baggiolini, M. (1989) A novel cleavage product of beta-thromboglobulin formed in cultures of stimulated mononuclear cells activates human neutrophils. Biochem. Biophys. Res. Commun. 159: 969–975.CrossRefGoogle Scholar
  107. Walz, A., and Baggiolini, M. (1990) Generation of the neutrophil-activating peptide NAP-2 from platelet basic protein or connective tissue activating peptide III through monocyte proteases. J. Exp. Med. 171: 449–454.CrossRefGoogle Scholar
  108. Ward, P. A., and Newman, L. J. (1969) A neutrophil chemotactic factor from human C5. J. Immunol. 102: 93–99.Google Scholar
  109. Ward, P. A., and Ozols, J. (1973) Characterization of the protease activity in the chemotactic factor inactivator. J. Clin. Invest. 58: 123–129.CrossRefGoogle Scholar
  110. Webster, R. O., Hong, S. R., Johnston, R. B., and Henson, P. M. (1980) Biological effects of the human complement fragments C5 anc C5a des Arg on neutrophil function. Im- munopharmacology 2: 201–219.Google Scholar
  111. White, J. R., Naccache, P. H., Molski, T. F. P., Borgeat, P., and Sha’afi, R. I. (1983) Direct demonstration of increased intracellular concentration of free calcium in rabbit and human neutrophils following stimulation by chemotactic factor. Biochem. Biophys. Res. Commun. 113: 44–50.CrossRefGoogle Scholar
  112. Yoshimura, T., Matsushima, K., Oppenheim, J. J., and Leonard, E. J. (1987) Neutrophil chemotactic factor produced by lipopolysaccharide (LPS) stimulated human blood mononuclear leukocytes. I Partial characterization and separation from interleukin-1 (IL-1). J. Immunol. 139: 788–793.Google Scholar
  113. Zigmond, S. H. (1981) Consequences of chemotactic peptide receptor modulation for leukocyte orientation. J. Cell Biol. 88: 644–647.CrossRefGoogle Scholar
  114. Zigmond, S. H., and Sullivan, S. J. (1979) Sensory adaptation of leukocytes to chemotactic peptides. J. Cell Biol. 82: 517–527.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 1991

Authors and Affiliations

  • Liana Harvath
    • 1
  1. 1.Division of Hematology, Center for Biologics Evaluation and ResearchFood and Drug AdministrationBethesdaUSA

Personalised recommendations