Advertisement

Adhesion systems in embryonic epithelial-to-mesenchyme transformations and in cancer invasion and metastasis

  • Ana M. Vallés
  • Brigitte Boyer
  • Jean Paul Thiery
Chapter
Part of the Experientia Supplementum book series (EXS, volume 59)

Abstract

During development, the embryo takes shape as its cells associate into specific multicellular aggregates that are the primordia for the tissues and organs of the adult body. During this period, cells continually change their relative positions as a result of modifications in their adhesive interactions. For instance, adhesion between cells maintains the integrity of epithelial layers, and conversely, reduced adhesion allows cells to dissociate from an epithelium and form mesenchyme. Mesenchymal cells may then eventually migrate from their site of origin to a distant location where they reassociate to once again form a cohesive unit. This transient conversion, termed epithelial-to-mesenchyme transition (EMT), is one of the most commonly found processes in the establishment of the embryonic pattern in multicellular organisms (Hay, 1981; Edelman, 1988). It is present during various morphogenetic events including gastrulation, neural crest migration, somitogenesis, the formation of kidney tubules, cardiac valves and the secondary palate (Thiery et al., 1985; Kolega, 1986; Duband et al., 1987). In the adult organism, epithelial cells are also capable of migrating in response to wounds in epithelial sheets or for regenerative purposes. The changes in adhesive properties necessary to correctly perform these tasks must be coordinated with external cues and with growth stages. Similar alterations might also occur during tumor cell dissemination, which is an integral component of the metastatic process. In this respect, cancer metastasis or developmental abnormalities may result from breakdown in these control mechanisms.

Keywords

Neural Crest Neural Crest Cell Neural Crest Cell Migration Cranial Neural Crest Cell Autocrine Motility Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrandon, Y., and Green, H. (1987) Cell migration is essential for sustained growth of keratinocyte colonies: the roles of transforming growth factor-alpha and epidermal growth factor. Cell 50: 1131–1137.CrossRefGoogle Scholar
  2. Boiler, K., Vestweber, D., and Kemler, R. (1985) Cell adhesion molecule uvomoruHn is localized in the intermediate junctions of adult intestinal epithelial cells. J. Cell Biol. 100: 327–332.CrossRefGoogle Scholar
  3. Boyer, B., Tucker, G. C., Vallés, A. M., Franke, W. W., and Thiery, J. P. (1989) Rearrangements of desmosomal and cytoskeletal proteins during the transition from epithelial to fibroblastoid organization in cultured rat bladder carcinoma cells. J. Cell. Biol. 109: 1495–1509.CrossRefGoogle Scholar
  4. Brackenbury, R., Thiery, J. P., Rutishauser, U., and Edelman, G. M. (1977) Adhesion among neural cells of the chick embryos. I An immunological assay for molecules involved in cell-cell binding. J. Biol. Chem. 252: 6835–6840.Google Scholar
  5. Brümmendorf, T., Wolff, J. M., Frank, R., and Rathjen, F. G. (1989) Neural cell recognition molecule F11: homology with fibronectin type III and immunoglobulin type C domains. Neuron 2: 1351–1361.CrossRefGoogle Scholar
  6. Burridge, K., Fath, K., Kelly, T., Nuckolls, G., and Tucker, C. (1988) Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Ann. Rev. Cell Biol. 4: 487–525.CrossRefGoogle Scholar
  7. Carter, W. G., Wayner, E. A., Bouchard, T. S., and Kaur, P. (1990) The role of integrins α2β1 and α3β1 in cell-cell and cell-substratum adhesion of human epidermal cells. J. Cell Biol. 110: 1387–1404.CrossRefGoogle Scholar
  8. Cate, R. L., Mattahano, R. J., Hesssion, C., Tizard, R., Färber, N. M., Cheung, A., Ninfa, E. G., Frey, A. Z., Gash, D. J., Chow, E. P., Fischer, R. A., Bertonis, J. M., Torres, G., Wallner, B. P., Ramachandran, K. L., Ragin, R. C., Manganaro, T. F., McLaughlin, D. T., and Donahoe, P. K. (1986) Isolation of the bovine and human genes for Müllerian inhibiting substance and expression of the human gene in animal cells. Cell 45: 685–698.CrossRefGoogle Scholar
  9. Cowin, P., and Garrod, D. R. (1983) Antibodies to epithelial desmosomes show wide tissue and species cross-reactivity. Nature 302: 148–150.CrossRefGoogle Scholar
  10. Crossin, K. L., Choung, C.-M., and Edelman, G. M. (1985) Expression sequences of cell adhesion molecules. Proc. Natl. Acad. Sci. USA 82: 6942–6946.CrossRefGoogle Scholar
  11. Crossin, K. L., Hoffman, S., Grumet, M., Thiery, J. P., and Edelman, G. M. (1986) Site-restricted expression of cytotactin during development of the chicken embryo. J. Cell Biol. 102: 1917–1930.CrossRefGoogle Scholar
  12. Duband, J.-L., Darribère, T., Boucaut, J.-C., Boulekbache, H., and Thiery, J. P. (1987) Regulation of development by the extracellular matrix, in: Cell Membranes, Vol. 3; eds E. Elson, W. Frazier. Plenum Press, New York, pp. 1–78.CrossRefGoogle Scholar
  13. Duband, J.-L., Dufour, S., Hatta, K., Takeichi, M., Edelman, G. M., and Thiery, J. P. (1987) Adhesion molecules during somitogenesis in the avian embryo. J. Cell Biol. 104: 1361–1374.CrossRefGoogle Scholar
  14. Duband, J.-L., Rocher, S., Chen, W.-T., Yamada, K. M., and Thiery, J. P. (1986) Cell adhesion and migration in the early vertebrate embryo: location and possible role of the putative fibronectin receptor complex. J. Cell Biol. 102: 160–178.CrossRefGoogle Scholar
  15. Duband, J.-L., and Thiery, J. P. (1982) Distribution of fibronectin in the early phase of avian cephalic neural crest cell migration. Dev. Biol. 93: 308–323.CrossRefGoogle Scholar
  16. Duband, J.-L., and Thiery, J. P. (1987) Distribution of laminin and collagens during avian neural crest development. Development 101: 461–478.Google Scholar
  17. Duband, J.-L., Volberg, T., Sabanay, Thiery J. P., and Geiger, B. (1988) Spatial and temporal distribution of adherens-junction associated adhesion molecule A-CAM during avian embryogenesis. Development 103: 325–344.Google Scholar
  18. Dufour, S., Duband, J.-L., Humphries, M. J., Obara, M., Yamada, K. M., and Thiery, J. P. (1988a) Attachment, spreading and locomotion of avian neural crest cells are mediated by multiple adhesion sites on fibronectin molecules. EMBO J. 7: 2661–2671.Google Scholar
  19. Dufour, S., Duband, J.-L., Kornblihtt, A. R., and Thiery, J. P. (1988b) Role of fibronectins during embryonic development and cell migrations. TIG 4: 198–203.CrossRefGoogle Scholar
  20. Dustin, M. L., and Springer, T. A. (1989) T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1. Nature 341: 619–624.CrossRefGoogle Scholar
  21. Edelman, G. M. (1983) Cell adhesion molecules. Science 219: 450–457.CrossRefGoogle Scholar
  22. Edelman, G. M. (1986) Cell adhesion molecules in the regulation of animal form and tissue pattern. Ann. Rev. Cell Biol. 2: 81–116.CrossRefGoogle Scholar
  23. Edelman, G. M. (1987) CAMs and Igs: cell adhesion and the evolutionary origins of immunity. Immunol. Rev. 1: 11–45.CrossRefGoogle Scholar
  24. Edelman, G. M. (1988) Morphoregulatory molecules. Biochemistry 27: 3533–3543.CrossRefGoogle Scholar
  25. Furley, A. J., Morton, S. B., Manalo, D., Karagogeos, D., Dodd, J., and Jessell, T. M. (1990) The axonal glycoprotein TAG-1 is an immunoglobulin superfamily member with neurite outgrowth-promoting activity. Cell 61: 157–170.CrossRefGoogle Scholar
  26. Garrod, D. R., Parrish, E. P., Mattey, D. L., Marston, J. E., Measures, H. R., and Vilela, M. J. (1990) Desmosomes, in: Morphoregulatory Molecules; eds G. M. Edelman, B. A. Cunningham, J. P. Thiery. John Wiley and Sons, New York, pp. 315–340.Google Scholar
  27. Gavrilovic, J., Moens, G., Thiery, J. P., and Jouanneau, J. (1990) Expression of transfected transforming growth factor-a induces a motile fibroblastic-like phenotype with extracellular matrix-degrading potential in a rat bladder carcinoma cell line. Cell Regul. 1: 1003–1014.Google Scholar
  28. Gherardi, E., Gray, J., Stocker, M., Perryman, M., and Furlong, F. (1989) Purification of scatter factor, a fibroblast-derived basic protein that modulates epithelial interactions and movements. Proc. Natl. Acad. Sci. USA 86: 5844–5848.CrossRefGoogle Scholar
  29. Gherardi, E., and Stoker, M. (1990) Hepatocytes and scatter factors. Nature 346: 228.CrossRefGoogle Scholar
  30. Gibralter, D., and Turner, D. C. (1985) Dual adhesive systems of chick myoblasts. Dev. Biol. 112: 292–307.CrossRefGoogle Scholar
  31. Goodenough, D. A. (1990) Gap junctions and intercellular communication, in: Morphoregulatory Molecules; eds G. M. Edelman, B. A. Cunningham, J. P. Thiery. John Wiley and Sons, New York, pp. 357–370.Google Scholar
  32. Greenburg, G., and Hay, E. D. (1988) Cytoskeleton and thyroglobuhn expression change during transformation of thyroid epithelium to mesenchyme-like cells. Development 102: 605–622.Google Scholar
  33. Grotendorst, G. R. (1984) Alteration of the chemotactic response of NIH/3T3 cells to PDGF by growth factors, transformation, and tumor promoters. Cell 36: 279–285.CrossRefGoogle Scholar
  34. Grotendorst, G. R., Seppä, H. E., Kleinman, H. K., and Martin, G. (1981) Attachment of smooth muscle cells to collagen and their migration toward PDGF. Proc. Natl. Acad. Sci. USA 78: 3669–3672.CrossRefGoogle Scholar
  35. Harrelson, A. L., and Goodman, C. S. (1988) Growth cone guidance in insects: fasciclin II is a member of the immunoglobulin superfamily. Science 242: 700–708.CrossRefGoogle Scholar
  36. Hatta, K., Okada, T. S., and Takeichi, M. (1985) A monoclonal antibody disrupting calcium-dependent cell-cell adhesion in brain tissue: possible role of its target antigen in animal pattern formation. Proc. Natl. Acad. Sci. USA 82: 2789–2793.CrossRefGoogle Scholar
  37. Hatta, K., and Takeichi, M. (1986) Expression of N-cadherin adhesion molecule associated with early morphogenetic events in chick development. Nature 320: 447–449.CrossRefGoogle Scholar
  38. Hay, E. D. (1981) Cell Biology of the Extracellular Matrix; ed. E. D. Hay. Plenum, New York, pp. 379–409.CrossRefGoogle Scholar
  39. Heimark, R. L., Degner, M., and Schwartz, S. M. (1990) Identification of a Ca++-depen- dent cell-cell adhesion molecule in endothehal cells. J. Cell Biol. 110: 1745–1756.CrossRefGoogle Scholar
  40. Hirari, Y., Nose, A., Kobayashi, S., and Takeichi, M. (1989a) Expression and role of E- and P-cadherin adhesion molecules in embryonic histogenesis. I. Lung epithelial morphogenesis. Development 105: 263–270.Google Scholar
  41. Hirari, Y., Nose, A., Kobayashi, S., and Takeichi, M. (1989b) Expression and role of E- and P-cadherin adhesion molecules in embryonic histogenesis. II. Skin morphogenesis. Development 105: 271–277.Google Scholar
  42. Holton, J. K., Kenny, T. P., Legan, P. K., Collins, J. E., Keen, J. N., Sharma, R., and Garrod, D. R. (1990) Desmosomal glycoproteins 2 and 3 (desmocollins) show N-terminal similarity to calcium-dependent cell-cell adhesion molecules. J. Cell Sci. 97: 239–246.Google Scholar
  43. Humphries, M. J. (1990) The molecular basis and specificity of integrin-ligand interactions. J. Cell Sci. 97: 585–592.Google Scholar
  44. Humphries, M. J., and Yamada, K. M. (1990) Cell interaction sites of fibronectin in adhesion and metastasis, in Morphoregulatory Molecules; eds G. M. Edelman, B. A. Cunningham, J. P. Thiery. John Wiley and Sons, New York, pp. 137–172.Google Scholar
  45. Hynes, R. O. (1987) Integrins: a family of cell surface receptors. Cell 48: 549–554.CrossRefGoogle Scholar
  46. Ignotz, R. A., and Massagué, J. (1987) Cell adhesion protein receptors as targets for transforming growth factor-β action. Cell 51: 189–197.CrossRefGoogle Scholar
  47. Koch, P. J., Walsh, M. J., Schmelz, M., Goldschmidt, M. D., Zimbelmann, R., and Franke, W. W. (1990) Identification of desmoglein, a constitutive desmosomal glycoprotein, as a member of the Cadherin family of cell adhesion molecules. Eur. J. Cell Biol. 53: 1–12.Google Scholar
  48. Kolega, J. (1986) The cellular basis of epithelial morphogenesis, in: Developmental Biology, Vol. 2; ed. L. W. Browder, New York, Plenum, pp. 103–142.Google Scholar
  49. Larjava, H., Peltonen, J., Akijama, S. K., Yamada, S. S., Gralnick, H. R., Uitto, J., and Yamada, K. M. (1990) Novel function for β1 integrins in keratinocyte cell-cell interactions. J. Cell Biol. 110: 803–815.CrossRefGoogle Scholar
  50. Jouanneau, J., Gavrilovic, J., Caruelle, D., Jaye, M., Moens, G., Caruelle, J.-P., and Thiery, J. P. (1991) Secreted or non-secreted forms of aFGF produced by transfected epithehal cells influence cell morphology, motility and invasive potential. Proc. Natl. Acad. Sci. USA 88: 2893–2897.CrossRefGoogle Scholar
  51. Le Douarin, N. M. (1982) The neural crest. Cambridge University Press, Cambridge.Google Scholar
  52. Li, C., and Poznansky, M. J. (1990) Characterization of the ZO-1 protein in endothehal and other cell lines. J. Cell Sci. 97: 231–238.Google Scholar
  53. Liotta, L. A., Mandler, R., Murano, G., Katz, D. A., Gordon, R. K., Chiang, P. K., and Schiffmann, E. (1986) Tumor cell autocrine motility factor. Proc. Natl. Acad. Sci. USA 82: 3302–3306.CrossRefGoogle Scholar
  54. Mackie, E. J., Tucker, R. P., Halfter, W., Chiquet-Ehrismann, R., and Epperlein, H. H. (1988) The distribution of tenascin coincides with pathways of neural cost cell migration. Development 102: 237–250.Google Scholar
  55. Marlin, S. D., and Springer, T. A. (1987) Purified intercellular adhesion molecule-1 (CAM- 1) is a ligand for lymphocyte function-associated antigen 1 (LFA-1). Cell 51: 813–819.CrossRefGoogle Scholar
  56. McNeill, H., Ozawa, Kemler R., and Nelson, W. J. (1990) Novel function of the cell adhesion molecule uvomorulin as an inducer of cell surface polarity. Cell 62: 309–316.CrossRefGoogle Scholar
  57. Moll, R., Cowin, P., Kapprell, H.-P., and Franke, W. W. (1986) Desmosomal proteins: new markers for identification and classification of tumors. Lab. Invest. 54: 4–25.Google Scholar
  58. Moos, M., Tacke, R., Scherer, H., Teplow, D., Früh, K., and Schachner, M. (1988) Neural adhesion molecule LI as a member of the immunoglobulin superfamily with binding domains similar to fibronectin. Nature 334: 701–703.CrossRefGoogle Scholar
  59. Murphy, G., Reynolds, J. J., and Hembry, R. M. (1989) Metalloproteinases and cancer invasion and metastasis. Int. J. Cancer 44: 757–760.CrossRefGoogle Scholar
  60. Newgreen, D. F., and Thiery, J. P. (1990) Fibronectin in early avian embryos: synthesis and distribution along the migration pathways of neural crest cells. Cell Tissue Res. 211: 269–291.Google Scholar
  61. Noden, D. M. (1980) The migration and cytodifferentiation of cranial neural crest cells, in: Current Research Trends in Prenatal Craniofacial Development; eds R. M. Pratt, R. L. Christiansen. Elsevier/North-Holland, New York, pp. 3–25.Google Scholar
  62. Nose, A., Nagafuchi, A., and Takeichi, M. (1988) Expressed recombinant Cadherins mediate cell sorting in model systems. Cell 54: 993–1001.CrossRefGoogle Scholar
  63. Nose, A., and Takeichi, M. (1986) A novel Cadherin cell adhesion molecule: its expression patterns associated with implantation and organogenesis of mouse embryos. J. Cell. Biol. 103: 2649–2658.CrossRefGoogle Scholar
  64. Nose, A., Katsumi, T., and Takeichi, M. (1990) Localization of specificity determining sites in certain cell adhesion molecules. Cell 61: 147–155.CrossRefGoogle Scholar
  65. Ozawa, M., Baribault, H., and Kemler, R. (1989) The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J. 8: 1711–1717.Google Scholar
  66. Ozawa, M., Engel, J., and Kemler, R. (1990a) Single amino acid substitutions in one + binding site of uvomoruhn abolish the adhesive function. Cell 63: 1033–1038.CrossRefGoogle Scholar
  67. Ozawa, M., Ringwald, M., and Kemler, R. (1990b) Uvomorulin-catenin complex formation is regulated by a specific domain in the cytoplasmic region of the cell adhesion molecule. Proc. Natl. Acad. Sci. USA 87: 4246–4250.CrossRefGoogle Scholar
  68. Peifer, M., and Wieschaus, ZE. (1990) The segment polarity gene armadillo encodes a functionally modular protein that is the Drosophila homolog of human plakoglobin. Cell 63: 1167–1178.CrossRefGoogle Scholar
  69. Postlethwaite, A. E., Keski-Oja, J., Moses, H. L., and Kang, A. H. (1987) Stimulation of the chemotactic migration of human fibroblasts by TGF-ß. J. Exp. Med. 165: 251–256.CrossRefGoogle Scholar
  70. Potts, J. D., and Runyan, R. B. (1969) Epithelial-mesenchymal cell transformation in the embryonic heart can be mediated in part, by transforming growth factor ß. Dev. Biol. 134: 392–401.CrossRefGoogle Scholar
  71. Pratt, R. M., Larsen, M. A., and Johnston, M. C. (1975) Migration of cranial neural crest cell in a cell-free hyaluronate-rich matrix. Dev. Biol. 44: 298–305.CrossRefGoogle Scholar
  72. Rosen, E. M., Meromsky, L., Setter, E., Vinter, D. W., and Goldberg, I. D. (1990) Smooth muscle-derived factor stimulates mobility of human tumor cells. Invasion Metastasis 10: 49–64.Google Scholar
  73. Rovasio, R. A., Delouvée, A., Yamada, K. M., Timpl, R., and Thiery, J. P. (1983) Neural crest cell migration: requirement for exogenous fibronectin and high cell density. J. Cell Biol. 96: 462–473.CrossRefGoogle Scholar
  74. Ruoslahti, E., and Pierschbacher, M. D. (1985) Arg-Gly-Asp: a versatile cell recognition signal. Cell 44: 517–518.CrossRefGoogle Scholar
  75. Schwarz, M. A., Owaribe, K., Kartenbeck, J., and Franke, W. W. (1990) Desmosomes and hemidesmosomes: constitutive molecular components. Ann. Rev. Biol. 6: 461–491.CrossRefGoogle Scholar
  76. Seppä, H., Grotendorst, G., Seppä, S., Schififmann, E., and Martin, G. R. (1982) Platelet- derived growth factor is chemotactic for fibroblasts. J. Cell Biol. 92: 584–588.CrossRefGoogle Scholar
  77. Simmons, K. (1990) The epithelial tight junction: occluding barrier and fence; in: Morphoregulatory Molecules; eds G. M. Edelman, B. A. Cunningham, J. P. Thiery. John Wiley and Sons, New York, pp. 341–356.Google Scholar
  78. Simmons, D., Makgoba, M. W., and Seed, B. (1988) ICAM, an adhesion ligand of LFA-1, is homologous to the neural cell adhesion molecule NCAM. Nature 331: 624–627.CrossRefGoogle Scholar
  79. Springer, T. A. (1980) Adhesion receptors of the immune system. Nature 346: 425–434.CrossRefGoogle Scholar
  80. Stern, C. D., Ireland, G. W., Herrick, S. E., Gherardi, E., Oray, J., Perryman, M., and Stocker, M. (1990) Epithelial scatter factor and development of the chick embryonic axis. Development 110: 1271–1284.Google Scholar
  81. Stevenson, B. R., Silicano, J. D., Mooseker, M. S., and Goodenough, D. A. (1986) Identification of ZO-1: a high molecular weight polypeptide associated with the tight junctions (zona occludens) in a variety of epithelia. J. Cell. Biol. 103: 755–766.CrossRefGoogle Scholar
  82. Takeichi, M. (1988) The Cadherins: cell-cell adhesion molecules controUing animal morphogenesis. Development 102: 639–655.Google Scholar
  83. Takeichi, M., Ozaki, H. S., Tokunaga, K., Okada, T. S. (1979) Experimental manipulation of cell surface to affect cellular recognition mechanisms. Dev. Biol. 70: 195–205.CrossRefGoogle Scholar
  84. Thiery, J. P. (1989) Cell adhesion in morphogenesis; in: Cell-to-Cell Signals in Mammalian Development, NATO Series, Vol. H26; eds S. W. de Laat et al. Springer-Verlag, Berlin, pp. 109–128.Google Scholar
  85. Thiery, J. P., Brakenbury, R., Rutishauser, U., and Edelman, G. M. (1977) Adhesion among neural cells of the chick embryo. II Purification and characterization of a cell adhesion molecule from neural retina. J. Biol. Chem. 252: 6841–6845.Google Scholar
  86. Thiery, J. P., Duband, J.-L., Rutishauser, U., and Edelmann, G. M. (1982) Cell adhesion molecules in early chicken embryogenesis. Proc. Natl. Acad. Sci. USA 79: 6737–6741.CrossRefGoogle Scholar
  87. Thiery, J. P., Duband, J.-L., and Tucker, G. C. (1985) Cell migration in the vertebrate embryo: role of cell adhesion and tissue environment in pattern formation. Ann. Rev. Cell Biol. 110: 91–113.CrossRefGoogle Scholar
  88. Toyoshima, K., Ito, N., Hiasa, Y., Kamamoto, Y., and Makiura, S. (1971). Tissue culture of urinary bladder tumor induced in a rat by N-butyl-N-(4-hydroxybutyl) nitrosamine: establishment of cell line, Nara Bladder Tumor II. J. Natl. Cancer Inst. 47: 979–985.Google Scholar
  89. Tucker, G. C., Boyer, B., Gavrilovic, J., Emonard, H., and Thiery, J. P. (1990) Collagen- mediated dispersion of NBT-II rat bladder carcinoma cells. Cancer Res. 50: 129–137.CrossRefGoogle Scholar
  90. Vallés, A. M., Boyer, B., Badet, J., Tucker, G. C., Barritault, D., and Thiery, J. P. (1990a) Acidic fibroblast growth factor is a modulator of epithelial plasticity in a rat bladder carcinoma cell line. Proc. Natl. Acad. Sci. USA 87: 1124–1128.CrossRefGoogle Scholar
  91. Vallés, A. M., Tucker, G. C., Thiery, J. P., and Boyer, B. (1990b) Alternative patterns of mitogenesis and cell scattering induced by acidic FGF as a function of cell density in a rat bladder carcinoma cell line. Cell Regulation 1: 975–988.Google Scholar
  92. Vestal, D. J., and Ranscht, B. (1990) Characterization of T-cadherin and its coexpression with N-cadherin in developing chick myoblasts. J. Cell Biol. Abstr. 111: 158a.Google Scholar
  93. Volk, T., and Geiger, B. (1984) A 135-kD membrane protein of intercellular adherence junctions. EMBO J. 3: 2249–2260.Google Scholar
  94. Volk, T., and Geiger, B. (1986) A-CAM: A 135-kD receptor of intercellular adherens junctions I. Immuno-electron microscopic localization and biochemical studies. J. Cell Biol. 103: 1441–1450.CrossRefGoogle Scholar
  95. Wahl, S. M., Hunt, D. A., Wakefield, L. M., McCartney-Francis, N., Wahl, L. M., Roberts, A. B., and Sporn, M. B. (1987) Transforming growth factor type ß induces monocyte Chemotaxis and growth factor production. Proc. Natl. Acad. Sci. USA 84: 5788–5792.CrossRefGoogle Scholar
  96. Weidner, K. M., Behrens, J., Vandekerckhove, J., and Birchmeier, W. (1990) Scatter factor: molecular characteristics and effect on the invasiveness of epithelial cells. J. Cell Biol. 111: 2097–2108.CrossRefGoogle Scholar
  97. Yamada, Y., Graf, J., Iwanmoto, Y., Kato, K., Martin, G. R., Ogawa, K., and Sasaki, M. (1990) Laminin: structure, expression, and cell-binding sequence, in: Morphoregulatory Molecules; eds G. M. Edelman, B. A. Cunningham, J. P. Thiery. John Wiley and Sons, New York, pp. 231–244.Google Scholar
  98. Yoshida, C., and Takeichi, M. (1982) Teratocarcinoma cell adhesion: identification of a cell surface protein involved in calcium-dependent cell aggregation. Cell 28: 217–224.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 1991

Authors and Affiliations

  • Ana M. Vallés
    • 1
  • Brigitte Boyer
    • 1
  • Jean Paul Thiery
    • 1
  1. 1.Laboratoire de Physiopathologie du DéveloppementCNRS URA 1337 and Ecole Normale SupérieureParis Cedex 05France

Personalised recommendations