Cell Motility Factors pp 17-34 | Cite as
Adhesion systems in embryonic epithelial-to-mesenchyme transformations and in cancer invasion and metastasis
- 6 Citations
- 50 Downloads
Abstract
During development, the embryo takes shape as its cells associate into specific multicellular aggregates that are the primordia for the tissues and organs of the adult body. During this period, cells continually change their relative positions as a result of modifications in their adhesive interactions. For instance, adhesion between cells maintains the integrity of epithelial layers, and conversely, reduced adhesion allows cells to dissociate from an epithelium and form mesenchyme. Mesenchymal cells may then eventually migrate from their site of origin to a distant location where they reassociate to once again form a cohesive unit. This transient conversion, termed epithelial-to-mesenchyme transition (EMT), is one of the most commonly found processes in the establishment of the embryonic pattern in multicellular organisms (Hay, 1981; Edelman, 1988). It is present during various morphogenetic events including gastrulation, neural crest migration, somitogenesis, the formation of kidney tubules, cardiac valves and the secondary palate (Thiery et al., 1985; Kolega, 1986; Duband et al., 1987). In the adult organism, epithelial cells are also capable of migrating in response to wounds in epithelial sheets or for regenerative purposes. The changes in adhesive properties necessary to correctly perform these tasks must be coordinated with external cues and with growth stages. Similar alterations might also occur during tumor cell dissemination, which is an integral component of the metastatic process. In this respect, cancer metastasis or developmental abnormalities may result from breakdown in these control mechanisms.
Keywords
Neural Crest Neural Crest Cell Neural Crest Cell Migration Cranial Neural Crest Cell Autocrine Motility FactorPreview
Unable to display preview. Download preview PDF.
References
- Barrandon, Y., and Green, H. (1987) Cell migration is essential for sustained growth of keratinocyte colonies: the roles of transforming growth factor-alpha and epidermal growth factor. Cell 50: 1131–1137.CrossRefGoogle Scholar
- Boiler, K., Vestweber, D., and Kemler, R. (1985) Cell adhesion molecule uvomoruHn is localized in the intermediate junctions of adult intestinal epithelial cells. J. Cell Biol. 100: 327–332.CrossRefGoogle Scholar
- Boyer, B., Tucker, G. C., Vallés, A. M., Franke, W. W., and Thiery, J. P. (1989) Rearrangements of desmosomal and cytoskeletal proteins during the transition from epithelial to fibroblastoid organization in cultured rat bladder carcinoma cells. J. Cell. Biol. 109: 1495–1509.CrossRefGoogle Scholar
- Brackenbury, R., Thiery, J. P., Rutishauser, U., and Edelman, G. M. (1977) Adhesion among neural cells of the chick embryos. I An immunological assay for molecules involved in cell-cell binding. J. Biol. Chem. 252: 6835–6840.Google Scholar
- Brümmendorf, T., Wolff, J. M., Frank, R., and Rathjen, F. G. (1989) Neural cell recognition molecule F11: homology with fibronectin type III and immunoglobulin type C domains. Neuron 2: 1351–1361.CrossRefGoogle Scholar
- Burridge, K., Fath, K., Kelly, T., Nuckolls, G., and Tucker, C. (1988) Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Ann. Rev. Cell Biol. 4: 487–525.CrossRefGoogle Scholar
- Carter, W. G., Wayner, E. A., Bouchard, T. S., and Kaur, P. (1990) The role of integrins α2β1 and α3β1 in cell-cell and cell-substratum adhesion of human epidermal cells. J. Cell Biol. 110: 1387–1404.CrossRefGoogle Scholar
- Cate, R. L., Mattahano, R. J., Hesssion, C., Tizard, R., Färber, N. M., Cheung, A., Ninfa, E. G., Frey, A. Z., Gash, D. J., Chow, E. P., Fischer, R. A., Bertonis, J. M., Torres, G., Wallner, B. P., Ramachandran, K. L., Ragin, R. C., Manganaro, T. F., McLaughlin, D. T., and Donahoe, P. K. (1986) Isolation of the bovine and human genes for Müllerian inhibiting substance and expression of the human gene in animal cells. Cell 45: 685–698.CrossRefGoogle Scholar
- Cowin, P., and Garrod, D. R. (1983) Antibodies to epithelial desmosomes show wide tissue and species cross-reactivity. Nature 302: 148–150.CrossRefGoogle Scholar
- Crossin, K. L., Choung, C.-M., and Edelman, G. M. (1985) Expression sequences of cell adhesion molecules. Proc. Natl. Acad. Sci. USA 82: 6942–6946.CrossRefGoogle Scholar
- Crossin, K. L., Hoffman, S., Grumet, M., Thiery, J. P., and Edelman, G. M. (1986) Site-restricted expression of cytotactin during development of the chicken embryo. J. Cell Biol. 102: 1917–1930.CrossRefGoogle Scholar
- Duband, J.-L., Darribère, T., Boucaut, J.-C., Boulekbache, H., and Thiery, J. P. (1987) Regulation of development by the extracellular matrix, in: Cell Membranes, Vol. 3; eds E. Elson, W. Frazier. Plenum Press, New York, pp. 1–78.CrossRefGoogle Scholar
- Duband, J.-L., Dufour, S., Hatta, K., Takeichi, M., Edelman, G. M., and Thiery, J. P. (1987) Adhesion molecules during somitogenesis in the avian embryo. J. Cell Biol. 104: 1361–1374.CrossRefGoogle Scholar
- Duband, J.-L., Rocher, S., Chen, W.-T., Yamada, K. M., and Thiery, J. P. (1986) Cell adhesion and migration in the early vertebrate embryo: location and possible role of the putative fibronectin receptor complex. J. Cell Biol. 102: 160–178.CrossRefGoogle Scholar
- Duband, J.-L., and Thiery, J. P. (1982) Distribution of fibronectin in the early phase of avian cephalic neural crest cell migration. Dev. Biol. 93: 308–323.CrossRefGoogle Scholar
- Duband, J.-L., and Thiery, J. P. (1987) Distribution of laminin and collagens during avian neural crest development. Development 101: 461–478.Google Scholar
- Duband, J.-L., Volberg, T., Sabanay, Thiery J. P., and Geiger, B. (1988) Spatial and temporal distribution of adherens-junction associated adhesion molecule A-CAM during avian embryogenesis. Development 103: 325–344.Google Scholar
- Dufour, S., Duband, J.-L., Humphries, M. J., Obara, M., Yamada, K. M., and Thiery, J. P. (1988a) Attachment, spreading and locomotion of avian neural crest cells are mediated by multiple adhesion sites on fibronectin molecules. EMBO J. 7: 2661–2671.Google Scholar
- Dufour, S., Duband, J.-L., Kornblihtt, A. R., and Thiery, J. P. (1988b) Role of fibronectins during embryonic development and cell migrations. TIG 4: 198–203.CrossRefGoogle Scholar
- Dustin, M. L., and Springer, T. A. (1989) T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1. Nature 341: 619–624.CrossRefGoogle Scholar
- Edelman, G. M. (1983) Cell adhesion molecules. Science 219: 450–457.CrossRefGoogle Scholar
- Edelman, G. M. (1986) Cell adhesion molecules in the regulation of animal form and tissue pattern. Ann. Rev. Cell Biol. 2: 81–116.CrossRefGoogle Scholar
- Edelman, G. M. (1987) CAMs and Igs: cell adhesion and the evolutionary origins of immunity. Immunol. Rev. 1: 11–45.CrossRefGoogle Scholar
- Edelman, G. M. (1988) Morphoregulatory molecules. Biochemistry 27: 3533–3543.CrossRefGoogle Scholar
- Furley, A. J., Morton, S. B., Manalo, D., Karagogeos, D., Dodd, J., and Jessell, T. M. (1990) The axonal glycoprotein TAG-1 is an immunoglobulin superfamily member with neurite outgrowth-promoting activity. Cell 61: 157–170.CrossRefGoogle Scholar
- Garrod, D. R., Parrish, E. P., Mattey, D. L., Marston, J. E., Measures, H. R., and Vilela, M. J. (1990) Desmosomes, in: Morphoregulatory Molecules; eds G. M. Edelman, B. A. Cunningham, J. P. Thiery. John Wiley and Sons, New York, pp. 315–340.Google Scholar
- Gavrilovic, J., Moens, G., Thiery, J. P., and Jouanneau, J. (1990) Expression of transfected transforming growth factor-a induces a motile fibroblastic-like phenotype with extracellular matrix-degrading potential in a rat bladder carcinoma cell line. Cell Regul. 1: 1003–1014.Google Scholar
- Gherardi, E., Gray, J., Stocker, M., Perryman, M., and Furlong, F. (1989) Purification of scatter factor, a fibroblast-derived basic protein that modulates epithelial interactions and movements. Proc. Natl. Acad. Sci. USA 86: 5844–5848.CrossRefGoogle Scholar
- Gherardi, E., and Stoker, M. (1990) Hepatocytes and scatter factors. Nature 346: 228.CrossRefGoogle Scholar
- Gibralter, D., and Turner, D. C. (1985) Dual adhesive systems of chick myoblasts. Dev. Biol. 112: 292–307.CrossRefGoogle Scholar
- Goodenough, D. A. (1990) Gap junctions and intercellular communication, in: Morphoregulatory Molecules; eds G. M. Edelman, B. A. Cunningham, J. P. Thiery. John Wiley and Sons, New York, pp. 357–370.Google Scholar
- Greenburg, G., and Hay, E. D. (1988) Cytoskeleton and thyroglobuhn expression change during transformation of thyroid epithelium to mesenchyme-like cells. Development 102: 605–622.Google Scholar
- Grotendorst, G. R. (1984) Alteration of the chemotactic response of NIH/3T3 cells to PDGF by growth factors, transformation, and tumor promoters. Cell 36: 279–285.CrossRefGoogle Scholar
- Grotendorst, G. R., Seppä, H. E., Kleinman, H. K., and Martin, G. (1981) Attachment of smooth muscle cells to collagen and their migration toward PDGF. Proc. Natl. Acad. Sci. USA 78: 3669–3672.CrossRefGoogle Scholar
- Harrelson, A. L., and Goodman, C. S. (1988) Growth cone guidance in insects: fasciclin II is a member of the immunoglobulin superfamily. Science 242: 700–708.CrossRefGoogle Scholar
- Hatta, K., Okada, T. S., and Takeichi, M. (1985) A monoclonal antibody disrupting calcium-dependent cell-cell adhesion in brain tissue: possible role of its target antigen in animal pattern formation. Proc. Natl. Acad. Sci. USA 82: 2789–2793.CrossRefGoogle Scholar
- Hatta, K., and Takeichi, M. (1986) Expression of N-cadherin adhesion molecule associated with early morphogenetic events in chick development. Nature 320: 447–449.CrossRefGoogle Scholar
- Hay, E. D. (1981) Cell Biology of the Extracellular Matrix; ed. E. D. Hay. Plenum, New York, pp. 379–409.CrossRefGoogle Scholar
- Heimark, R. L., Degner, M., and Schwartz, S. M. (1990) Identification of a Ca++-depen- dent cell-cell adhesion molecule in endothehal cells. J. Cell Biol. 110: 1745–1756.CrossRefGoogle Scholar
- Hirari, Y., Nose, A., Kobayashi, S., and Takeichi, M. (1989a) Expression and role of E- and P-cadherin adhesion molecules in embryonic histogenesis. I. Lung epithelial morphogenesis. Development 105: 263–270.Google Scholar
- Hirari, Y., Nose, A., Kobayashi, S., and Takeichi, M. (1989b) Expression and role of E- and P-cadherin adhesion molecules in embryonic histogenesis. II. Skin morphogenesis. Development 105: 271–277.Google Scholar
- Holton, J. K., Kenny, T. P., Legan, P. K., Collins, J. E., Keen, J. N., Sharma, R., and Garrod, D. R. (1990) Desmosomal glycoproteins 2 and 3 (desmocollins) show N-terminal similarity to calcium-dependent cell-cell adhesion molecules. J. Cell Sci. 97: 239–246.Google Scholar
- Humphries, M. J. (1990) The molecular basis and specificity of integrin-ligand interactions. J. Cell Sci. 97: 585–592.Google Scholar
- Humphries, M. J., and Yamada, K. M. (1990) Cell interaction sites of fibronectin in adhesion and metastasis, in Morphoregulatory Molecules; eds G. M. Edelman, B. A. Cunningham, J. P. Thiery. John Wiley and Sons, New York, pp. 137–172.Google Scholar
- Hynes, R. O. (1987) Integrins: a family of cell surface receptors. Cell 48: 549–554.CrossRefGoogle Scholar
- Ignotz, R. A., and Massagué, J. (1987) Cell adhesion protein receptors as targets for transforming growth factor-β action. Cell 51: 189–197.CrossRefGoogle Scholar
- Koch, P. J., Walsh, M. J., Schmelz, M., Goldschmidt, M. D., Zimbelmann, R., and Franke, W. W. (1990) Identification of desmoglein, a constitutive desmosomal glycoprotein, as a member of the Cadherin family of cell adhesion molecules. Eur. J. Cell Biol. 53: 1–12.Google Scholar
- Kolega, J. (1986) The cellular basis of epithelial morphogenesis, in: Developmental Biology, Vol. 2; ed. L. W. Browder, New York, Plenum, pp. 103–142.Google Scholar
- Larjava, H., Peltonen, J., Akijama, S. K., Yamada, S. S., Gralnick, H. R., Uitto, J., and Yamada, K. M. (1990) Novel function for β1 integrins in keratinocyte cell-cell interactions. J. Cell Biol. 110: 803–815.CrossRefGoogle Scholar
- Jouanneau, J., Gavrilovic, J., Caruelle, D., Jaye, M., Moens, G., Caruelle, J.-P., and Thiery, J. P. (1991) Secreted or non-secreted forms of aFGF produced by transfected epithehal cells influence cell morphology, motility and invasive potential. Proc. Natl. Acad. Sci. USA 88: 2893–2897.CrossRefGoogle Scholar
- Le Douarin, N. M. (1982) The neural crest. Cambridge University Press, Cambridge.Google Scholar
- Li, C., and Poznansky, M. J. (1990) Characterization of the ZO-1 protein in endothehal and other cell lines. J. Cell Sci. 97: 231–238.Google Scholar
- Liotta, L. A., Mandler, R., Murano, G., Katz, D. A., Gordon, R. K., Chiang, P. K., and Schiffmann, E. (1986) Tumor cell autocrine motility factor. Proc. Natl. Acad. Sci. USA 82: 3302–3306.CrossRefGoogle Scholar
- Mackie, E. J., Tucker, R. P., Halfter, W., Chiquet-Ehrismann, R., and Epperlein, H. H. (1988) The distribution of tenascin coincides with pathways of neural cost cell migration. Development 102: 237–250.Google Scholar
- Marlin, S. D., and Springer, T. A. (1987) Purified intercellular adhesion molecule-1 (CAM- 1) is a ligand for lymphocyte function-associated antigen 1 (LFA-1). Cell 51: 813–819.CrossRefGoogle Scholar
- McNeill, H., Ozawa, Kemler R., and Nelson, W. J. (1990) Novel function of the cell adhesion molecule uvomorulin as an inducer of cell surface polarity. Cell 62: 309–316.CrossRefGoogle Scholar
- Moll, R., Cowin, P., Kapprell, H.-P., and Franke, W. W. (1986) Desmosomal proteins: new markers for identification and classification of tumors. Lab. Invest. 54: 4–25.Google Scholar
- Moos, M., Tacke, R., Scherer, H., Teplow, D., Früh, K., and Schachner, M. (1988) Neural adhesion molecule LI as a member of the immunoglobulin superfamily with binding domains similar to fibronectin. Nature 334: 701–703.CrossRefGoogle Scholar
- Murphy, G., Reynolds, J. J., and Hembry, R. M. (1989) Metalloproteinases and cancer invasion and metastasis. Int. J. Cancer 44: 757–760.CrossRefGoogle Scholar
- Newgreen, D. F., and Thiery, J. P. (1990) Fibronectin in early avian embryos: synthesis and distribution along the migration pathways of neural crest cells. Cell Tissue Res. 211: 269–291.Google Scholar
- Noden, D. M. (1980) The migration and cytodifferentiation of cranial neural crest cells, in: Current Research Trends in Prenatal Craniofacial Development; eds R. M. Pratt, R. L. Christiansen. Elsevier/North-Holland, New York, pp. 3–25.Google Scholar
- Nose, A., Nagafuchi, A., and Takeichi, M. (1988) Expressed recombinant Cadherins mediate cell sorting in model systems. Cell 54: 993–1001.CrossRefGoogle Scholar
- Nose, A., and Takeichi, M. (1986) A novel Cadherin cell adhesion molecule: its expression patterns associated with implantation and organogenesis of mouse embryos. J. Cell. Biol. 103: 2649–2658.CrossRefGoogle Scholar
- Nose, A., Katsumi, T., and Takeichi, M. (1990) Localization of specificity determining sites in certain cell adhesion molecules. Cell 61: 147–155.CrossRefGoogle Scholar
- Ozawa, M., Baribault, H., and Kemler, R. (1989) The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J. 8: 1711–1717.Google Scholar
- Ozawa, M., Engel, J., and Kemler, R. (1990a) Single amino acid substitutions in one + binding site of uvomoruhn abolish the adhesive function. Cell 63: 1033–1038.CrossRefGoogle Scholar
- Ozawa, M., Ringwald, M., and Kemler, R. (1990b) Uvomorulin-catenin complex formation is regulated by a specific domain in the cytoplasmic region of the cell adhesion molecule. Proc. Natl. Acad. Sci. USA 87: 4246–4250.CrossRefGoogle Scholar
- Peifer, M., and Wieschaus, ZE. (1990) The segment polarity gene armadillo encodes a functionally modular protein that is the Drosophila homolog of human plakoglobin. Cell 63: 1167–1178.CrossRefGoogle Scholar
- Postlethwaite, A. E., Keski-Oja, J., Moses, H. L., and Kang, A. H. (1987) Stimulation of the chemotactic migration of human fibroblasts by TGF-ß. J. Exp. Med. 165: 251–256.CrossRefGoogle Scholar
- Potts, J. D., and Runyan, R. B. (1969) Epithelial-mesenchymal cell transformation in the embryonic heart can be mediated in part, by transforming growth factor ß. Dev. Biol. 134: 392–401.CrossRefGoogle Scholar
- Pratt, R. M., Larsen, M. A., and Johnston, M. C. (1975) Migration of cranial neural crest cell in a cell-free hyaluronate-rich matrix. Dev. Biol. 44: 298–305.CrossRefGoogle Scholar
- Rosen, E. M., Meromsky, L., Setter, E., Vinter, D. W., and Goldberg, I. D. (1990) Smooth muscle-derived factor stimulates mobility of human tumor cells. Invasion Metastasis 10: 49–64.Google Scholar
- Rovasio, R. A., Delouvée, A., Yamada, K. M., Timpl, R., and Thiery, J. P. (1983) Neural crest cell migration: requirement for exogenous fibronectin and high cell density. J. Cell Biol. 96: 462–473.CrossRefGoogle Scholar
- Ruoslahti, E., and Pierschbacher, M. D. (1985) Arg-Gly-Asp: a versatile cell recognition signal. Cell 44: 517–518.CrossRefGoogle Scholar
- Schwarz, M. A., Owaribe, K., Kartenbeck, J., and Franke, W. W. (1990) Desmosomes and hemidesmosomes: constitutive molecular components. Ann. Rev. Biol. 6: 461–491.CrossRefGoogle Scholar
- Seppä, H., Grotendorst, G., Seppä, S., Schififmann, E., and Martin, G. R. (1982) Platelet- derived growth factor is chemotactic for fibroblasts. J. Cell Biol. 92: 584–588.CrossRefGoogle Scholar
- Simmons, K. (1990) The epithelial tight junction: occluding barrier and fence; in: Morphoregulatory Molecules; eds G. M. Edelman, B. A. Cunningham, J. P. Thiery. John Wiley and Sons, New York, pp. 341–356.Google Scholar
- Simmons, D., Makgoba, M. W., and Seed, B. (1988) ICAM, an adhesion ligand of LFA-1, is homologous to the neural cell adhesion molecule NCAM. Nature 331: 624–627.CrossRefGoogle Scholar
- Springer, T. A. (1980) Adhesion receptors of the immune system. Nature 346: 425–434.CrossRefGoogle Scholar
- Stern, C. D., Ireland, G. W., Herrick, S. E., Gherardi, E., Oray, J., Perryman, M., and Stocker, M. (1990) Epithelial scatter factor and development of the chick embryonic axis. Development 110: 1271–1284.Google Scholar
- Stevenson, B. R., Silicano, J. D., Mooseker, M. S., and Goodenough, D. A. (1986) Identification of ZO-1: a high molecular weight polypeptide associated with the tight junctions (zona occludens) in a variety of epithelia. J. Cell. Biol. 103: 755–766.CrossRefGoogle Scholar
- Takeichi, M. (1988) The Cadherins: cell-cell adhesion molecules controUing animal morphogenesis. Development 102: 639–655.Google Scholar
- Takeichi, M., Ozaki, H. S., Tokunaga, K., Okada, T. S. (1979) Experimental manipulation of cell surface to affect cellular recognition mechanisms. Dev. Biol. 70: 195–205.CrossRefGoogle Scholar
- Thiery, J. P. (1989) Cell adhesion in morphogenesis; in: Cell-to-Cell Signals in Mammalian Development, NATO Series, Vol. H26; eds S. W. de Laat et al. Springer-Verlag, Berlin, pp. 109–128.Google Scholar
- Thiery, J. P., Brakenbury, R., Rutishauser, U., and Edelman, G. M. (1977) Adhesion among neural cells of the chick embryo. II Purification and characterization of a cell adhesion molecule from neural retina. J. Biol. Chem. 252: 6841–6845.Google Scholar
- Thiery, J. P., Duband, J.-L., Rutishauser, U., and Edelmann, G. M. (1982) Cell adhesion molecules in early chicken embryogenesis. Proc. Natl. Acad. Sci. USA 79: 6737–6741.CrossRefGoogle Scholar
- Thiery, J. P., Duband, J.-L., and Tucker, G. C. (1985) Cell migration in the vertebrate embryo: role of cell adhesion and tissue environment in pattern formation. Ann. Rev. Cell Biol. 110: 91–113.CrossRefGoogle Scholar
- Toyoshima, K., Ito, N., Hiasa, Y., Kamamoto, Y., and Makiura, S. (1971). Tissue culture of urinary bladder tumor induced in a rat by N-butyl-N-(4-hydroxybutyl) nitrosamine: establishment of cell line, Nara Bladder Tumor II. J. Natl. Cancer Inst. 47: 979–985.Google Scholar
- Tucker, G. C., Boyer, B., Gavrilovic, J., Emonard, H., and Thiery, J. P. (1990) Collagen- mediated dispersion of NBT-II rat bladder carcinoma cells. Cancer Res. 50: 129–137.CrossRefGoogle Scholar
- Vallés, A. M., Boyer, B., Badet, J., Tucker, G. C., Barritault, D., and Thiery, J. P. (1990a) Acidic fibroblast growth factor is a modulator of epithelial plasticity in a rat bladder carcinoma cell line. Proc. Natl. Acad. Sci. USA 87: 1124–1128.CrossRefGoogle Scholar
- Vallés, A. M., Tucker, G. C., Thiery, J. P., and Boyer, B. (1990b) Alternative patterns of mitogenesis and cell scattering induced by acidic FGF as a function of cell density in a rat bladder carcinoma cell line. Cell Regulation 1: 975–988.Google Scholar
- Vestal, D. J., and Ranscht, B. (1990) Characterization of T-cadherin and its coexpression with N-cadherin in developing chick myoblasts. J. Cell Biol. Abstr. 111: 158a.Google Scholar
- Volk, T., and Geiger, B. (1984) A 135-kD membrane protein of intercellular adherence junctions. EMBO J. 3: 2249–2260.Google Scholar
- Volk, T., and Geiger, B. (1986) A-CAM: A 135-kD receptor of intercellular adherens junctions I. Immuno-electron microscopic localization and biochemical studies. J. Cell Biol. 103: 1441–1450.CrossRefGoogle Scholar
- Wahl, S. M., Hunt, D. A., Wakefield, L. M., McCartney-Francis, N., Wahl, L. M., Roberts, A. B., and Sporn, M. B. (1987) Transforming growth factor type ß induces monocyte Chemotaxis and growth factor production. Proc. Natl. Acad. Sci. USA 84: 5788–5792.CrossRefGoogle Scholar
- Weidner, K. M., Behrens, J., Vandekerckhove, J., and Birchmeier, W. (1990) Scatter factor: molecular characteristics and effect on the invasiveness of epithelial cells. J. Cell Biol. 111: 2097–2108.CrossRefGoogle Scholar
- Yamada, Y., Graf, J., Iwanmoto, Y., Kato, K., Martin, G. R., Ogawa, K., and Sasaki, M. (1990) Laminin: structure, expression, and cell-binding sequence, in: Morphoregulatory Molecules; eds G. M. Edelman, B. A. Cunningham, J. P. Thiery. John Wiley and Sons, New York, pp. 231–244.Google Scholar
- Yoshida, C., and Takeichi, M. (1982) Teratocarcinoma cell adhesion: identification of a cell surface protein involved in calcium-dependent cell aggregation. Cell 28: 217–224.CrossRefGoogle Scholar